Mini-Workshop on PDFs and Standard Candles at the LHC Karlsruhe, 19 March 2012

News From MSTW

James Stirling

Cambridge University

with Alan Martin, Robert Thorne, Graeme Watt and Helen Vryonidou, Arnold Mathijssen

recent MSTW -related publications

- arXiv:0901.0002 "Parton distributions for the LHC" [MSTW2008 sets]
- arXiv:0905.3531 "Uncertainties on α_s in global PDF analyses and implications for predicted hadronic cross sections"
- arXiv:1006.2753 "The effects of combined HERA and recent Tevatron W $\rightarrow l_V$ charge asymmetry data on the MSTW PDFs"
- arXiv:1007.2624 "Heavy-quark mass dependence in global PDF analyses and 3and 4-flavour parton distributions"
- arXiv:1106.5788 Graeme Watt, "Parton distribution function dependence of benchmark Standard Model cross sections at the 7 TeV LHC"
- arXiv:1106.5789 Robert Thorne and Graeme Watt "PDF dependence of Higgs cross sections at the Tevatron and LHC: Response to recent criticism"
- arXiv:1201.1295 Graeme Watt, "MSTW PDFs and impact of PDFs on cross sections at Tevatron and LHC"
- arXiv:1201.6180 Robert Thorne "The Effect of Changes of Variable Flavour Number Scheme on PDFs and Predicted Cross Sections"

no new published global fit since MSTW2008, but plenty of ongoing studies - comment on plans for new global fit at end

data sets used in MSTW fit

Data set	N _{pts.}	Data act	Δ/
H1 MB 99 e^+p NC	8	Data set	N _{pts.}
H1 MB 97 e^+p NC	64	BCDMS $\mu p F_2$	163
$H1 \log O^2 06 07 c^+ p NC$	0	BCDMS $\mu d F_2$	151
H1 high O2 O2 O2 O2 O2 O2 O2 O2	106	NMC $\mu p F_2$	123
HI high $Q^2 98 - 99 e^{-1} p NC$	120	NMC $\mu d F_2$	123
H1 high Q^2 99–00 e^+p NC	147	NMC $\mu n/\mu p$	148
ZEUS SVX 95 e^+p NC	30	E665 $\mu p F_2$	53
ZEUS 96–97 e ⁺ p NC	144	E665 $\mu d F_2$	53
ZEUS 98–99 e [–] p NC	92	SLAC ep F2	37
ZEUS 99–00 e ⁺ p NC	90	SLAC ed Fa	38
H1 99–00 e ⁺ p CC	28	NMC/RCDMS/SLAC E_{1}	31
ZEUS 99–00 e ⁺ p CC	30	E866 /NuSee pp DV	18/
H1/ZEUS $e^{\pm}p F_2^{charm}$	83	E866 / NuSea pd / nn DV	15
H1 99–00 e^+p incl. jets	24		<u> </u>
ZEUS 96–97 e^+p incl. jets	30		53
7EUS 98–00 $e^{\pm}p$ incluiets	30	CHORUS $\nu N F_2$	42
$DO \parallel n\bar{n}$ incluiets	110	NuleV $\nu N x F_3$	45
CDE II pā incluiets	76	CHORUS $\nu N \times F_3$	33
$CDE \parallel M/$, $h_{\rm conversion}$	20	$CCFR\; u N ightarrow \mu \mu X$	86
CDF II $VV \rightarrow IV$ asym.	22	NuTeV $ u N ightarrow \mu \mu X$	84
DØ II $VV \rightarrow Iv$ asym.	10	All data sets	2743
DØ II ∠ rap.	28		2145
CDF II Z rap.	29	Red = New w.r.t. MR	ST 2006 fi

MSTW input parametrisation

At input scale $Q_0^2 = 1$ GeV²:

$$\begin{aligned} xu_{v} &= A_{u} x^{\eta_{1}} (1-x)^{\eta_{2}} (1+\epsilon_{u} \sqrt{x} + \gamma_{u} x) \\ xd_{v} &= A_{d} x^{\eta_{3}} (1-x)^{\eta_{4}} (1+\epsilon_{d} \sqrt{x} + \gamma_{d} x) \\ xS &= A_{S} x^{\delta_{S}} (1-x)^{\eta_{S}} (1+\epsilon_{S} \sqrt{x} + \gamma_{S} x) \\ x\bar{d} - x\bar{u} &= A_{\Delta} x^{\eta_{\Delta}} (1-x)^{\eta_{S}+2} (1+\gamma_{\Delta} x + \delta_{\Delta} x^{2}) \\ xg &= A_{g} x^{\delta_{g}} (1-x)^{\eta_{g}} (1+\epsilon_{g} \sqrt{x} + \gamma_{g} x) + A_{g'} x^{\delta_{g'}} (1-x)^{\eta_{g'}} \\ xs + x\bar{s} &= A_{+} x^{\delta_{S}} (1-x)^{\eta_{+}} (1+\epsilon_{S} \sqrt{x} + \gamma_{S} x) \\ xs - x\bar{s} &= A_{-} x^{\delta_{-}} (1-x)^{\eta_{-}} (1-x/x_{0}) \end{aligned}$$

Note: 20 parameters allowed to go free for eigenvector PDF sets

And this is what the PDFs look like ...

MSTW 2008 NLO PDFs (68% C.L.) xf(x,Q²) 1 xf(x,Q²) 15 $Q^2 = 10 \text{ GeV}^2$ $Q^2 = 10^4 \text{ GeV}^2$ g/10 g/10 0.8 0.8 0.6 0.6 **ь,Б** 0.4 0.4 d .c 0.2 0.2 0 0 10⁻³ 10⁻³ 10⁻⁴ 10⁻² 10⁻² 10⁻⁴ 10⁻¹ **10**⁻¹ 1 1 Х х

Many comparisons with experimental data over past three years ...

etc etc

In this talk...

- Charm and strange from LHC W,Z + jets data (WJS and Helen Vryonidou)
- Experimental error propagation: Hessian vs. MC (Graeme Watt, presented at PDF4LHC, November 2011)
- Exploring valence quark parameterisations (Robert Thorne and Arnold Mathijssen)

probing heavy quark pdfs at LHC?

take advantage of (a) qg dominates W,Z + jetproduction, (b) heavy quark suppression becomes weaker at high Q², small x, (c) ability to tag c,b jets

gluon

gluon

0000000

0000000

CMS: "W production in association with c jets" (CMS-PAS-EWK-11-013)

$$R_c^{\pm} \equiv \sigma(W^+ \bar{c}) / \sigma(W^- c)$$
 and $R_c \equiv \sigma(W + c) / \sigma(W + jets)$

S

Also: Z + c as a measure of charm pdf?

anatomy of W+c at LHC

(with Helen Vryonidou)

 slight disagreement with CMS theory predictions for R_c[±] using MCFM@NLO (numerical error?). Our predictions are systematically 3% higher

$$R_c \approx \frac{(s + \bar{s} + \epsilon_{dc}(d + \bar{d}))g + \dots}{\sum_q (q + \bar{q})g + \dots}$$

• not true that $s = sbar \rightarrow R_c^{\pm} = 1$, because of CKMsuppressed asymmetric d-quark contribution

$$R_c^{\pm} \approx \frac{(\bar{s} + \epsilon_{dc}\bar{d})g + \dots}{(s + \epsilon_{dc}\bar{d})g + \dots} \qquad \epsilon_{dc} \approx 0.05$$

$$R_c^{\pm}(\text{MSTW}) \approx_{\text{LO}} \frac{37.1 \ [\bar{s}] + 2.9 \ [\bar{d}]}{38.4 \ [s] + 5.2 \ [d]}$$
 cross sections in pb

* We use MCFM applying the CMS cuts $(p_T^j > 20 \text{ GeV}, |\eta^j| < 2.1, p_T^l > 25 \text{ GeV}, |\eta^l| < 2.1, R = 0.5, R^{lj} = 0.3)$

 differences between the three sets easily understood by comparing the corresponding s,d pdfs.

Note:

MSTW assume u,d,s quarks have same x^{δ} behaviour as $x \rightarrow 0$, hence much tighter constraint

MSTW parametrisation:

$$1 \quad xu_{v}(x,Q_{0}^{2}) = A_{u}x^{\eta_{1}}(1-x)^{\eta_{2}}(1+\epsilon_{u}\sqrt{x}+\gamma_{u}x)$$

$$2 \quad xd_{v}(x,Q_{0}^{2}) = A_{d}x^{\eta_{3}}(1-x)^{\eta_{4}}(1+\epsilon_{d}\sqrt{x}+\gamma_{d}x)$$

$$3 \quad xS(x,Q_{0}^{2}) = A_{s}x^{\delta_{s}}(1-x)^{\eta_{s}}(1+\epsilon_{s}\sqrt{x}+\gamma_{s}x)$$

$$4 \quad x\Delta(x,Q_{0}^{2}) = A_{\Delta}x^{\eta_{\Delta}}(1-x)^{\eta_{s+2}}(1+\gamma_{\Delta}x+\delta_{\Delta}x^{2})$$

$$5 \quad x(s+\bar{s})(x,Q_{0}^{2}) = A_{+}x^{\delta_{s}}(1-x)^{\eta_{+}}(1+\epsilon_{s}\sqrt{x}+\gamma_{s}x)$$

$$6 \quad x(s-\bar{s})(x,Q_{0}^{2}) = A_{-}x^{\delta_{-}}(1-x)^{\eta_{-}}(1-x/x_{0})$$

$$7 \quad xg(x,Q_{0}^{2}) = A_{g}x^{\delta_{g}}(1-x)^{\eta_{g}}(1+\epsilon_{g}\sqrt{x}+\gamma_{g}x) + A_{g'}x^{\delta_{g'}}(1-x)^{\eta_{g'}}$$

Where:

$$\begin{aligned} \Delta &= \overline{d} - \overline{u}, \\ q_{\nu} &= q - \overline{q}, \\ \Sigma &= u + \overline{u} + d + \overline{d} + s + s^{\overline{}} \\ S &= \Sigma - u_{\nu} - u_{\nu} = 2(\overline{u} + \overline{d}) + s + \overline{s} \end{aligned}$$

impact of W+c at LHC: NNPDF study

• for high p_T W/jet, $R_c \rightarrow 0$, $R_c^{\pm} \rightarrow 0$ because of light quark dominance, $s/q \rightarrow 0$

14

of course, strange also contributes differently to the total W and Z cross sections ('linear vs. quadratic'), and the ratio $\sigma(W)/\sigma(Z)$ has some sensitivity

charm from Z+c at LHC

$$R_c^Z = \frac{\sigma(Z + c - \text{jet})}{\sigma(Z + \text{jet})}$$

$$R_c^Z \approx \frac{\kappa_u(c + \bar{c})g + \dots}{[\kappa_u(u + \bar{u} + c + \bar{c}) + \kappa_d(d + \bar{d} + s + \bar{s})]g + \dots}$$

Ratio	CT10	MSTW2008NLO	NNPDF21NLO
R_c^Z	$0.0623^{+0.0032}_{-0.0032}$	$0.0640^{+0.0014}_{-0.0016}$	$0.0662 {\pm} 0.0013$

$$\begin{array}{c} c + \bar{c} \\ \overline{\sum_{q} (q + \bar{q})} \\ \end{array}$$

х

18

Experimental error propagation: Hessian vs. MC (study by Graeme Watt*)

- first implementation of Monte Carlo sampling in MSTW fit.
- parameterisation bias is likely to be small (except perhaps s, sbar)
- studies of fitting restricted data sets and consistent or inconsistent pseudodata suggest need MSTW-style tolerance ($\chi^2 > 1$)
- new method of generating random PDFs in parameter space using basis of eigenvectors including dynamic tolerance
- random PDFs can be used for Bayesian reweighting (contact Graeme.Watt@cern.ch)

*presented at PDF4LHC Meeting, November 2011

Parameterisation bias for PDFs evolved to Q = 100 GeV

Graeme Watt 2011

 \rightarrow no significant overall bias, small effect in u_v at x ~ 0.001 - 0.01

Extended valence quark parameterisations using Chebyshev polynomials (Thorne, Mathijssen)

MSTW fits use (q=u,d):

 $xq_V(x,Q_0^2) = A_q x^{\eta_{1q}} (1-x)^{\eta_{2q}} \times [1 + \epsilon_q \sqrt{x} + \gamma_q x]$

 quite restrictive, particularly in important mid-x range relevant for LHC electroweak physics, so try

 $xq_V(x,Q_0^2) = A_q x^{\eta_{1q}} (1-x)^{\eta_{2q}} \times \left[1 + \sum_{i=1}^{\infty} \alpha_i T_i(y(x) = 1 - 2x^\beta)\right]$

with e.g. n = 4 and $\beta = 0.25$ or 0.5

• study:

- quality of overall global NLO fit
- comparison of best-fit shape with MSTW08NLO

quality of new fits w.r.t. MSTW08

Parameterisation	χ^2	$\Delta \chi^2$	n_{add}	$\chi^2_{reduced}$	Improvement	$xu_{\nu}(x,Q_0^2) = A_u x^{\eta_1} (1-x)^{\eta_2} \times$
MSTW08	2543.0	0	0	0.954580	0.00E+00	$(1 + \epsilon_u \sqrt{x} + \gamma_u x)$
c4m025v	2542.5	-0.5	4	0.955827	-1.25E-03	$\left(1 + \sum_{i=1}^{4} \alpha_i T_i(y = 1 - 2x^{\frac{1}{4}})\right)$
MSTW08+x ^{1/4}	2542.3	-0.65	2	0.955034	-4.54E-04	$(1 + \epsilon_u \sqrt{x} + \gamma_u x + \gamma 2_u x^{\frac{1}{4}})$
c4m05v	2539.0	-4.3	4	0.954511	6.83E-05	$\left(1 + \sum_{i}^{4} \alpha_{i} T_{i}(y = 1 - 2\sqrt{x})\right)$
MSTW08+x ²	2537.0	-6.0	2	0.953043	1.54E-03	$\left(1+\epsilon_u\sqrt{x}+\gamma_ux+\gamma 2_ux^2\right)$

where

 χ^{2} n
n_{add} $\chi^{2}_{reduced} = \frac{\chi^{2}}{\nu} = \frac{\chi^{2}}{N-n-1}$ Improvement

Chi-squared value of global fit to MSTW08 data sets (N = 2699 data points) Number of parameters fitted = $34 + n_{add}$ Number of additional parameters compared to default MSTW08

Chi-squared per degree of freedom

 $\chi^2_{reduced}$ compared to MSTW08 value; Positive for better = lower $\chi^2_{reduced}$

new c4m05v fit vs. MSTW08 (90% c.l. uncertainty)

Fractional difference and Fractional uncertainty at 90% confidence level in xuv at 1 GeV

Fractional difference and Fractional uncertainty at 90% confidence level in xuy at 10 GeV

Fractional difference and Fractional uncertainty at 90% confidence level in xu_{ν} at 100 GeV

Fractional difference and Fractional uncertainty at 90% confidence level in xdy at 1 GeV

Fractional difference and Fractional uncertainty at 90% confidence level in xdy at 10 GeV

Fractional difference and Fractional uncertainty at 90% confidence level in xdv at 100 GeV

Summary

- W,Z + c-jet measurements at LHC can provide important complementary (e.g. high Q², low x) information on strange and charm. Consistency between tagged-jet and total cross section measurements?
- MC studies of MSTW-style fits confirm size of uncertainty bands and generally weak parametrisation dependence
- Preliminary study of alternative Chebyshev parametrisations of valence distributions: little change in quality of global fit, and changes in PDFs mostly stay well within previous c.l. Bands (u_v a possible exception)

Summary contd.

- 2008 MSTW fit(s) still agree remarkably well with more recent Tevatron and LHC data
- there are a number of obvious upgrades, e.g. combined HERA data, retune of valence u,d distributions at small x, revisit nuclear corrections, etc. – these have already been extensively studied internally
- we will wait for a more complete set of 7 TeV LHC and Tevatron data before performing and releasing a new global fit; likely to be MSTW2012

extra slides

