Aachen SFB Flavour Workshop

The potential of B_s physics and supersymmetry in flavour physics Ulrich Nierste

Universität Karlsruhe

Outline

- 1. The potential of B_s physics
- 2. Supersymmetry
- 3. Summary

1. The potential of B_s physics

I first discuss measurements which provide novel information unaccessible with B^+ and B_d physics. Then I turn to phenomena where measurements with B_s mesons could complement studies with B^+ and B_d mesons.

$B_{\rm s}\!-\!\overline{B}_{\rm s}$ mixing

 $B_s - \overline{B}_s$ mixing is a $\Delta B = 2$, $\Delta S = 2$ process and has no counterpart in B_d or B^+ physics. It is more sensitive to generic new physics in $b \rightarrow s$ transitions than $\Delta B = 1$ decays. Once the $B_s - \overline{B}_s$ oscillation frequency is measured, it will e.g. strengthen bounds on the off-diagonal 2-3 elements of the squark mass matrices in supersymmetry.

3 physical quantities in $B_s - \overline{B}_s$ mixing, involving the off-diagonal elements of mass and decay matrices:

$$|M_{12}|, |\Gamma_{12}|, \phi = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$

Relation of Δm and $\Delta \Gamma$ to $|M_{12}|$, $|\Gamma_{12}|$ and ϕ :

 $\Delta m = M_H - M_L \simeq 2|M_{12}|, \qquad \Delta \Gamma = \Gamma_L - \Gamma_H \simeq 2|\Gamma_{12}|\cos\phi$

Standard Model: M_{12} stems from the dispersive (real) part of the box diagram, internal (\bar{t}, t) . Γ_{12} stems from the absorpive (imaginary) part of the box diagram, internal (\bar{c}, c) . (u's are negligible).

New physics can change $|M_{12}|$ and $\arg M_{12}$.

 M_{12} is computed in the most popular versions of the MSSM. There are even computations of hadronic matrix elements, which may appear in addition to $\langle \overline{B}_s | \overline{b}s_{V-A} \overline{b}s_{V-A} | B_s \rangle$.

In the near future (Tevatron Run-II data) the only way to access the phase of M_{12} is through $\Delta\Gamma$. At the Tevatron $\Delta\Gamma$ is inferred from lifetime measurement in the CP-even mode ${}^{(\overline{B}_{s})}_{s} \rightarrow (J/\psi\phi)_{L=0}$ and the CP-odd mode ${}^{(\overline{B}_{s})}_{s} \rightarrow (J/\psi\phi)_{L=1}$.

In the presence of new physics this measurement really determines

$$\Delta\Gamma_{\rm CP}' \equiv \Delta\Gamma \cos\phi = \Delta\Gamma_{\rm SM} \cos^2\phi$$

 \Rightarrow theory progress on $\Delta\Gamma_{\rm SM}$ desirable.

NLO QCD corrections are known. Unlike in Δm there are corrections of order Λ_{QCD}/m_b in $\Delta\Gamma$ and they are large, of order 30%.

July 2004: CDF reported the measurement

$$\begin{split} \frac{\Delta\Gamma}{\Gamma_s} &= 0.71^{+0.24}_{-0.28} \pm 0.01 & \text{constrained with } \Gamma_d = \Gamma_s, \\ \frac{\Delta\Gamma}{\Gamma_s} &= 0.65^{+0.25}_{-0.33} \pm 0.01 & \text{unconstrained}, \end{split}$$

which is 2.0σ or 1.5σ above the central value of the theory prediction.

July 2005: DØ reported the measurement

$$\begin{split} \frac{\Delta\Gamma}{\Gamma_s} &= 0.24^{+0.28}_{-0.38} & \text{unconstrained,} \\ \frac{\Delta\Gamma}{\Gamma_s} &= 0.25^{+0.14}_{-0.15} & \text{constrained with exp. world average for } \overline{\tau}(B_s). \end{split}$$

Prediction:

$$\left(\frac{\Delta\Gamma}{\Gamma}\right)_{B_s} = \left(\frac{f_{B_s}}{210 \,\text{MeV}}\right)^2 \left[0.006 \,B + 0.172 \,B_S - 0.063\right]$$
$$= 0.12^{+0.04}_{-0.03}$$

using lattice results for hadronic parameters (Lattice 2004 average):

$$f_{B_s} = 246 \pm 16 \text{ MeV},$$
 $n_f = 2 \text{ and } n_f = 2 + 1$
 $B_S = 0.86 \pm 0.07 \text{ MeV},$ $n_f = 0$

With the MILC result (hep-ph/0311130):

$$f_{B_s} = 260 \pm 29 \,\mathrm{MeV}, \qquad n_f = 2 + 1$$
$$\Rightarrow \left(\frac{\Delta\Gamma}{\Gamma}\right)_{B_s} = 0.14 \pm 0.05$$

 $B_s - \overline{B}_s$ mixing is theoretically widely studied, there is demand for progress in $\Delta\Gamma$, namely lattice QCD results for the operators which occur at order Λ_{QCD}/m_b (and then possibly also perturbative $\alpha_s \Lambda_{QCD}/m_b$ terms).

Isospin-violating $b \rightarrow s$ decays

There is currently a controversial debate on whether the Standard Model can explain the isospin-breaking amplitudes in $B \rightarrow K\pi$ decays ("enhanced electroweak penguins"). The extraction requires non-trivial QCD input using e.g. SU(3)_F or QCDF.

Unlike in B^+ and B_d decays there are pure $\Delta I = 1$ (I is the isospin) $b \to s$ decays of the B_s :

$$B_s \to \phi \pi^0, \qquad \qquad B_s \to \phi \rho^0.$$

The branching fraction of the second decay can be measured at CDF. QCD penguins drop out, tree diagrams are CKM-suppressed.

 \Rightarrow calculation of branching fraction with QCDF desirable

CP violation in $b \rightarrow s$ penguin decays

Naive averages: Winter 2005: $\sin(\beta)^{\text{eff}} = 0.43 \pm 0.07$, see right plot: LP 2005: $\sin(\beta)^{\text{eff}} = 0.51 \pm 0.06$, well below $\sin(2\beta)^{b \rightarrow c\overline{c}s} = 0.69 \pm 0.03$.

QCD Factorization finds small corrections to $\sin(2\beta_{\text{eff}}) - \sin(2\beta)$, which are positive.

Note: To measure a mixing-induced CP asymmetry $(S_f \text{ term})$ in a $b \to s\overline{q}q$ decay of a B_d meson one needs a neutral Kaon in the final state, so that the

$$b(\overline{d}) \to \overline{q}qs(\overline{d})$$
 and $\overline{b}(d) \to \overline{q}q\overline{s}(d)$

decays of B_d and \overline{B}_d can interfere.

In a $\overline{B}_{s}^{\prime}$ decay, however, one has a flavorless final state:

$$b(\overline{s}) \to \overline{q}qs(\overline{s}), \qquad \overline{b}(s) \to \overline{q}q\overline{s}(s)$$

and the needed interference occurs in any final state.

 $\Rightarrow B_s$ physics could be the El Dorado of $b \rightarrow s\overline{q}q$ penguin physics! More effort on B_s tagging is needed! Meanwhile... a way out?

Consider a new CP phase σ in the $b \to s\overline{s}s$ decay. Let now $\overline{B}_s^{} \to f_{CP+}$ denote a $b \to s\overline{s}s$ decay into a CP-even final state, e.g. $f_{CP+} = (\phi\phi)_{L=0}$. With

$$\langle f_{CP+} | B_s \rangle \propto e^{i\sigma}$$
 and $\langle f_{CP+} | \overline{B}_s \rangle \propto -e^{-i\sigma}$

the coefficients in

$$\Gamma[f,t] \propto |\langle f | B_L \rangle|^2 e^{-\Gamma_L t} + |\langle f | B_H \rangle|^2 e^{-\Gamma_H t}$$

read:

$$\left|\left\langle f_{CP+} \left| B_L \right\rangle \right|^2 \propto \frac{1 + \cos(\phi + 2\sigma)}{2}, \qquad \left|\left\langle f_{CP+} \left| B_H \right\rangle \right|^2 \propto \frac{1 - \cos(\phi + 2\sigma)}{2}$$

$$\Gamma[f_{CP+},t] \propto \frac{1+\cos(\phi+2\sigma)}{2}e^{-\Gamma_L t} + \frac{1-\cos(\phi+2\sigma)}{2}e^{-\Gamma_H t}$$

For the Standard Model case $\phi = \sigma = 0$ only B_L can decay into f_{CP+} and the lifetime measured in e.g. $(\overline{B}_s) \to (\phi\phi)_{L=0}$ determines Γ_L .

If the lifetime measured in $(\overline{B}_s) \to (\phi\phi)_{L=0}$ is longer than the one measured in $(\overline{B}_s) \to (J/\psi\phi)_{L=0}$, new physics in the $b \to s\overline{s}s$ decay amplitude is established through $\sigma \neq 0$, with the possibility of $\phi = 0$ or $\phi \neq 0$. If the lifetime measured in $(\overline{B}_s) \to (\phi\phi)_{L=0}$ is shorter than the one measured in $(\overline{B}_s) \to (J/\psi\phi)_{L=0}$, new physics in both the $b \to s\overline{s}s$ decay amplitude and $B_s - \overline{B}_s$ mixing is established through $\sigma \neq 0$ and $\phi \neq 0$.

Finally B_s decays can be combined with B_d decays to probe the $SU(3)_F$ symmetry.

2. Supersymmetry

Superpotential of the MSSM: only source of flavour-changing transitions are the Yukawa interactions as in the SM.

SUSY-breaking terms have additional sources of FCNC's: If one rotates the
(s)quark superfields to a basis in which the quark mass matrices are diagonal
(super-CKM basis), the squark mass matrices are nondiagonal in general.
⇒ flavour physics probes SUSY-breaking

Two widely studied versions of the MSSM:

- 1. Assume flavour-blind SUSY-breaking terms, Minimal Flavour Violation (MFV).
- 2. Allow for arbitrary, but small, off-diagonal elements of the squark mass matrices, generic MSSM.

Scenario 2 has too many parameters to study correlations in a meaningful way.

B physics and SUSY Higgses: large aneta

MSSM: two Higgs doublets, coupling to either up- or down-type fermions, vacuum expectation values v_u and v_d with $\sqrt{v_u^2 + v_d^2} = v = 174 \text{ GeV}$.

If $\tan \beta \equiv v_u/v_d \sim 50$, then the Yukawa coupling y_b of the non-standard Higgses H^+ , H^0 and A^0 and their superpartners Higgsinos, which are components of charginos and neutralinos, to b_R quarks are large: $m_b \tan \beta/v \sim 1$.

⇒ Large effects in *b* physics FCNC diagrams with (χ^+, \tilde{t}) loops and tree and loop diagrams with H^+ .

Motivations to study large $\tan \beta$:

- 1. probes bottom-top unification, i.e. upper bounds on $\tan \beta$ quantify the violation of $y_b = y_t$, implying lower bounds on couplings of Higgses in SUSY GUT's like SO(10).
- 2. *b* physics probes the portion of the $(\tan \beta, M_A)$ parameter space most relevant to Higgs searches at the Tevatron.
- 3. well-motivated scenario of b physics with operators with new Dirac structures, but the same flavour structure as in the SM.

Vast literature on large $\tan \beta$, but practically all assume MFV at the electroweak scale. Also extra CP-phases, which appear in the flavour-conserving piece of the MSSM, are usually neglected, although many of them are poorly constrained from EDM's. Further when certain all-order effects are resummed, the limit $M_{\rm SUSY} \gg v$ is employed.

 \longrightarrow see tomorrow's talk on project C2.

MSSM with new $b \rightarrow s$ transitions

The data on $b_L \rightarrow d_L$, $s_L \rightarrow d_L$ and $b_R \rightarrow s_L$ transitions confirm the Standard Model and don't allow for O(1) effects of non-MFV new physics. However, the data leave room for new contributions to $b_L \rightarrow s_L$ and in particular to $b_{L,R} \rightarrow s_R$ transitions, since $\sin(2\beta_{\text{eff}})(b \rightarrow s\overline{q}q)$ is below $\sin(2\beta) = 0.69 \pm 0.03$ by 3σ .

A natural mechanism for new effects in $b_R \rightarrow s_R$ occurs in SUSY GUT models: SUSY-GUT's unify quarks and leptons. E.g.

$$\overline{f 5} = egin{pmatrix} d^c_R \ d^c_R \ d^c_R \ d^c_R \ d^c_R \ \ell_L \
u_\ell \end{pmatrix} ext{ in SU(5)}$$

Experiment: $\nu_{\mu} - \nu_{\tau}$ mixing is large. If the large mixing angle comes from the rotation of a $\overline{5}$ in flavour space, a large $\tilde{s}_R - \tilde{b}_R$ mixing is possible.

Ulrich Nierste

Chang, Masiero, Murayama (CMM): Model based on the breaking chain $SO(10) \rightarrow SU(5) \rightarrow SU(3) \times SU(2) \times U(1)$ with SUSY-breaking terms universal near the Planck scale.

Renormalisation group effects from the top Yukawa coupling destroy the universality. Large $\tilde{s}_R - \tilde{b}_R$ mixing is generated when the $\overline{5}$ is rotated to the mass eigenstate basis.

Effect: New operators with s_R and b_R fields, i.e. $\overline{b}_R \gamma_\mu s_R \overline{s}_R \gamma^\mu s_R$ or $\overline{b}_R s_L \overline{s}_L s_R$. Here $2|M_{12}|$ is the $B_s - \overline{B}_s$ oscillation frequency and $\phi = \arg M_{12}$ is the new CP phase in $B_s - \overline{B}_s$ mixing.

Black: Standard Model prediction, Red: allowed in the CMM model

Blue: experimentally excluded,

3. Summary

Novel features of B_s physics compared to B⁺ and B_d physics:
 1. B_s-B_s mixing with Δm and ΔΓ constraining magnitude and phase of M₁₂,

2. pure $\Delta I = 1 \ b \to s$ decays like $B_s \to \phi \rho^0$.

- B_s physics has the potential to complement B_d physics by studying the mixing-induced CP asymmetry in $b \rightarrow s\overline{q}q$ decays in any hadronic final state. It may further shed light on the quality of $SU(3)_F$ breaking.
- Flavour physics is sensitive to scales well above the electroweak scale. In supersymmetry it probes the SUSY-breaking sector.
- In the region of large $\tan \beta$ it probes the SUSY Higgs sector with relations to Higgs collider physics.
- In GUT models one can link the large atmosperic neutrino mixing angle to new $b_R \rightarrow s_R$ transitions, which are least tested and may even now show hints of deviations from the SM.