B-Meson Distribution Amplitudes

Alexander Khodjamirian (Siegen University)

Heavy Flavour Mini-Workshop , SFB/TR9 , Aachen, 26.10.05

Outline

- Prehistory
- B-meson DA: definition
- 3-particle DA's
- Evolution of $\phi^B_+(\omega,\mu)$
- Use of QCD sum rules
- Models of $\phi^B_+(\omega)$
- Summary on λ_B

Prehistory of *B***-Meson DA**

• B-meson "wave function", quark models of exclusive B decays

 $\langle x_q \rangle = (m_q/m_b)$, $x_q = p_q/p_B$, m_q -"constituent" mass [M.Bauer,B.Stech, M.Wirbel (1985)]

• heavy-light analog of pion DA, finite m_b [V.Chernyak, A.Zhitnisky , I.Zhitnisky (1985)]

• B-meson DA in the context of PQCD factorization for $B \to \pi$. [A. Szczepaniak, E. M. Henley and S. J. Brodsky (1990)] see also . [R. Akhoury, G. Sterman and Y. P. Yao (1994)] modern branch: k_t factorization in PQCD approach [H.n.Li et al]

B-Meson DA: the definition

[A.G. Grozin. M.Neubert (1997)]

• Light-cone matrix element, consistent with HQET

$$\langle 0|T\left\{\bar{d}_{\alpha}(x)[x,0]b_{\beta}(0)\right\}|\bar{B}^{0}(v)\rangle|_{x^{2}=0}$$

$$= -\frac{if_{B}m_{B}}{4}\left[(1+\psi)\gamma_{5}\int_{0}^{\infty}d\omega e^{-i\omega v\cdot x}\left\{\phi_{+}^{B}(\omega) + \frac{\phi_{+}^{B}(\omega) - \phi_{-}^{B}(\omega)}{2v\cdot x}\not{x}\right\}\gamma_{5}\right]_{\beta\alpha}$$

 $p_B = m_B v$, [x, 0]-Wilson line, (scale-dependence not yet specified)

Factorization in $B \rightarrow \gamma l \nu_l$

G. P. Korchemsky, D. Pirjol, T. M. Yan (2000)
S. Descotes-Genon, C. T. Sachrajda (2003)
E. Lunghi, D. Pirjol, D. Wyler (2003),
S. W. Bosch, R. J. Hill, B. O. Lange, M. Neubert (2004)

"hard", factoriz.

"soft", nonfact.

$$f_{B\pi}(q^2) \sim \alpha_s(\mu) \int d\omega du \phi^B_+(\omega,\mu) T_h(q^2,\omega,u,\mu) \varphi_{\pi}(u,\mu) + f^{soft}_{B\pi}(q^2)$$

B-meson DA enters only the hard-scattering part M. Beneke and T. Feldmann (2000)

B-Meson DA in $B \to \pi\pi$

 $A(B \to \pi\pi) \sim C(\mu) f_{\pi} f_{B\pi}(0) m_B^2 + \dots$ $+ \alpha_s(\mu) \tilde{C}(\mu) \int d\omega du dv \phi_+^B(\omega, \mu) T_h(\omega, u, v, \mu) \varphi_\pi(u, \mu) \varphi_\pi(v, \mu) + \dots$

B-meson DA enters the "hard-spectator" nonfact.ampl.

M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda (1999)

more recently: B meson DA's in SCET ...

Properties of $\phi^B_{\pm}(\omega)$

• model-independent constraint from QCD equation of motion, Wandzura-Wilczek-type relation:

$$\phi_{-}^{B}(\omega) = \int_{\omega}^{\infty} d\rho \frac{\phi_{+}^{B}(\rho)}{\rho} \quad \Rightarrow \phi_{-}^{B}(0) = 1/\lambda_{B}$$

(neglecting the three-particle $b\bar{q}G$ DA's of B)

• boundary condition: $\omega \to 0$: $\phi^B_+(\omega) \sim \omega$, $\phi^B_-(0) = const$

Parton interpretation of $\phi^B_{\pm}(\omega)$?

• $\int_0^\infty d\omega \phi_{\pm}^B(\omega) = 1$, (local limit well defined, normalization $\rightarrow f_B$)

- variable $\omega = (l_0 + l_3)$: (*l*-the spectator quark momentum in *B* rest frame)
- heavy-light kinematics: $\phi^B_{\pm}(\omega) \neq 0 \text{ at } 0 < \omega \leq 2\bar{\Lambda}, \ (\bar{\Lambda} = m_B - m_b)$

• typical $\varphi_+^B(u)$ $(u = \omega/m_B)$ vs $\varphi_\pi(u) \sim u(1-u)$

Caution: no QCD radiative corrections/renormalization yet!

Quark-antiquark-gluon DA's: definition

$$[H. \text{ Kawamura, J. Kodaira,} \\ C.F.Qiao and K. Tanaka,(2001)]$$

$$x^{2} \simeq 0 \xrightarrow{\times} d \qquad f_{B}^{0}(p_{B})$$

$$\langle 0|\bar{d}_{\alpha}(x)G_{\lambda\rho}(ux)b_{\beta}(0)|\bar{B}^{0}(v)\rangle = \frac{f_{B}m_{B}}{4} \int_{0}^{\infty} d\omega \int_{0}^{\infty} d\xi \ e^{-i(\omega+u\xi)v\cdot x}$$

$$\times \left[(1+\psi) \left\{ (v_{\lambda}\gamma_{\rho} - v_{\rho}\gamma_{\lambda}) \left(\Psi_{A}(\omega,\xi) - \Psi_{V}(\omega,\xi) \right) - i\sigma_{\lambda\rho}\Psi_{V}(\omega,\xi) - \left(\frac{x_{\lambda}v_{\rho} - x_{\rho}v_{\lambda}}{v\cdot x} \right) X_{A}(\omega,\xi) + \left(\frac{x_{\lambda}\gamma_{\rho} - x_{\rho}\gamma_{\lambda}}{v\cdot x} \right) Y_{A}(\omega,\xi) \right\} \right]_{\beta\alpha}.$$

Quark-antiquark-gluon DA's: what do we know ?

- related to $\phi_{\pm}^{B}(\omega)$ via QCD equations of motion
- modified WW relation, schematically: $\phi^B_{-}(0) = 1/\lambda_B + \int d\omega d\xi \{\Psi_{V,A}(\omega,\xi)\},$
- behavior at small ω, ξ
- normalization of $q\bar{q}G$ DA's related to the first and second moments of $\phi^B_+(\omega)$

Evolution of ϕ_+^B

- calculable in HQET [M. Neubert, B. Lange, (2003)]
- one-loop renormalization of the light-cone operator

 $O_+(t) = \bar{q}(tn) \not\!\!/ [tn,0] \Gamma h_v(0).$

 v_{μ} -heavy quark velocity, $n^2 = 0$, $n \cdot v = 1$; light-like interval x = tn

$$\langle 0|O_+(t)|B_v\rangle \sim \Phi^B_+(t) = \int_0^\infty d\omega e^{-i\omega t}\phi^B_+(\omega)$$

• hard gluon exchange \rightarrow UV divergences, $O_+^{bare} \rightarrow O_+^{ren}$

Renormalization

• the heavy-light vertex correction diverges at $t \to 0$ $(x \to 0)$, troublesome ? the "cusp anomalous dimension"

$\phi_{(}\omega,\mu)$ after renormalization

- expansion in local operators not possible $O_+^{ren}(t) \neq \sum_{i=1}^{\infty} t^n O_n(0)^{ren}$
- positive moments $\int_0^\infty d\omega \omega^N \phi_+^B(\omega,\mu)$, $N \ge 0$ divergent including the normalization to f_B
- no parton interpretation for $\phi^B_+(\omega,\mu)$
- but ! no problem for factorization theorems containing the inverse moment λ_B
- evolution equation for λ_B

 $\mu \frac{d}{d\mu} (\lambda_B(\mu))^{-1} = 2\alpha_s / \pi (\lambda_B(\mu))^{-1} + 4\alpha_s / \pi \int_0^\infty d\omega \frac{\phi_+^B(\omega,\mu)}{\mu} \ln(\omega/\mu)$

UV cutoff and first two moments

[S.J.Lee and M.Neubert, hep-ph/0509350]

• introduce UV cutoff , calculate first two moments in $O(\alpha_s)$

$$M_N(\Lambda_{UV},\mu) = \int_0^{\Lambda_{UV}} d\omega \ \omega^N \phi_+^B(\omega,\mu)$$
$$M_0 = 1 + \frac{\alpha_s C_F}{4\pi} f_0(\ln(\Lambda_{UV}/\mu),\bar{\Lambda}/\Lambda_{UV})$$
$$M_1 = 4\bar{\Lambda}/3(1 + \frac{\alpha_s C_F}{4\pi}....)$$

• model-independent prediction for the radiative tail at one-loop:

$$\phi^B_+(\omega,\mu) \sim -\frac{\alpha_s C_F}{\pi} \ln(\omega/\mu)/\omega$$

QCD sum rules for ϕ^B

• in HQET, use the Chernyak-Zhitnisky method for Gegenbauer moments of φ_{π} [A. G. Grozin and M. Neubert (1997)]

• recent NLO calculation (including radiative corrections!) [V. M. Braun, D. Y. Ivanov and G. P. Korchemsky,(2003)]

• The correlator:

 $i \int d^4x \, e^{-ik(vx)} \langle 0 | \mathrm{T}\{O_+(t)\bar{h}_v(x)\Gamma_2 q(x)\} | 0 \rangle = \{...\}T(t,k) \,.$ $O_+(t) = \bar{q}(tn) \, \eta'[tn,0]\Gamma \, h_v(0),$ $k < 0 \text{- external momentum variable}, \ \{...\} \text{- a trace}$

correlator: the perturbative diagrams

correlator: the condensate diagrams

• the result for diagrams: schematically

٠

$$T^{QCD \oplus HQET}(t,k) = \int_0^\infty \frac{dk'}{k'-k-i\epsilon} \int_0^\infty d\omega e^{-i\omega t} \rho(k',\omega,\mu)$$

• The hadronic dispersion relation: B-meson \oplus {excited B-states}

$$T(t,k) = \frac{1}{2} F^{2}(\mu) \frac{1}{\overline{\Lambda} - k - i\epsilon} \int_{0}^{\infty} d\omega \, e^{-i\omega t} \phi^{B}_{+}(\omega,\mu) + \dots$$
$$F(\mu) - B \text{ decay constant in HQET}$$

• duality, ω_0 threshold, Borel transform., 2pt SR for $F(\mu)$

$$\Rightarrow \lim_{\omega \to 0} \phi(\omega) \sim \omega, \quad \lim_{\omega \to \infty} \phi(\omega) \sim -\log(\omega/\mu)/\omega$$

• the sum rule fitted to an explicit ansatz for $\varphi_{+}^{B}(\omega)$,

$$\phi_{+}^{B}(\omega,\mu=1 \text{ GeV}) = \frac{4\lambda_{B}^{-1}}{\pi} \frac{\omega}{\omega^{2}+1} \left[\frac{1}{\omega^{2}+1} - \frac{2(\sigma_{B}-1)}{\pi^{2}}\ln\omega\right],$$

(ω in units of GeV) $\lambda_B^{-1} = \int_0^\infty \phi_+^B(\omega, \mu)/\omega = (460 \pm 110 \text{ MeV})^{-1},$ $\sigma_B = \lambda_B \int_0^\infty \phi_+^B(\omega, \mu) \log(\mu/\omega)/\omega = 1.4 \pm 0.4$ $\mu = 1 \text{ GeV}$

> Model for $\varphi^B_+(k)$ (solid) perturbative sum rule (dashed) M=0.45 GeV, $\omega_0 = 1$ GeV (dashed)

[V. M. Braun et al. hep-ph/0309330]

• A hybrid model for $\phi(\omega, \mu)$ [Lee, Neubert]:

inputs: Grozin-Neubert exponential model at small ω , "glued" to the radiative tail at large ω :

agrees with Braun-Ivanov-Korchemsky model at certain large Λ_{UV}

Applying LCSR to $B \rightarrow \gamma l \nu$

• Matching the LCSR for $B \to \gamma l \nu$ amplitude to the factorization formula with $\int d\omega \phi^B_+(\omega)/\omega$

- the estimate $\lambda_B = 600 \text{ MeV}$
- $[\mathrm{P.~Ball} \text{ and } \mathrm{E.~Kou}, \, (2003) \]$

• the $O(1/m_b)$ long-distance photon emission (photon DA's) in $B \to \gamma l \nu$ is numerically large ! [see also A.K., G.Stoll, D.Wyler, (1995)]

LCSR: relating λ_B to $f_{B\to\pi}(0)$

[A.K., T. Mannel, N.Offen PLB(2005), hep-ph/0504091]
The correlator:

 $F^{(B)}_{\mu\nu}(p,q) = i \int d^4x \, e^{ip \cdot x} \langle 0|T\left\{\bar{d}(x)\gamma_{\mu}\gamma_5 u(x), \bar{u}(0)\gamma_{\nu}b(0)\right\} |\bar{B}^0(p+q)\rangle \,.$

 $q^2 = 0, \, p^2 < 0, \, |p^2| \gg \Lambda_{QCD}^2,$

u-quark propagates near LC .

The sum rule

• OPE result, the LO diagram: only $\phi^B_{-}(u)$ contributes

$$F_{\mu\nu}^{(B)} = 2if_B \int_0^\infty \frac{d\omega}{m_B\omega - p^2} \phi_-^B(\omega) p_\mu p_\nu + \dots,$$

• Hadronic dispersion relation:

$$\langle \pi(p) | \bar{u} \gamma_{\mu} b | B(p+q) \rangle = f_{B\pi}^{+}(q^{2})(2p_{\mu} + q_{\mu}) + \dots$$
$$F_{\mu\nu}^{(B)} = \left\{ \frac{2if_{\pi}f_{B\pi}^{+}(0)}{-p^{2}} + \int_{s_{h}}^{\infty} ds \frac{\rho^{h}(s)}{s-p^{2}} \right\} p_{\mu}p_{\nu} + \dots,$$

apply duality in pion channel⊕ Borel transformation. see also [F. De Fazio, T. Feldmann and T. Hurth; arXiv:hep-ph/0504088] • The relation: (using $s_{\pi}^0 \ll m_B^2$):

$$\frac{1}{\lambda_B} = \frac{f_\pi f_{B\pi}^+(0)m_B}{f_B M^2 (1 - e^{s_0^\pi/M^2})} \,.$$

• inputs: LCSR for $B \to \pi$ form factor (in terms of pion DA's), 2pt sum rule for f_B

- 3-particle B meson DA's, enter
 1) soft-gluon diagram
 2) indirectly, violation of WW relation estimated a few %
- the result: $\lambda_B = 440 \pm 100 \text{ MeV}$
- future: $O(\alpha_s) \oplus$ renormalization

Summary on the inverse moment

$$1/\lambda_B = \int_0^\infty d\omega \frac{\phi_+^B(\omega)}{\omega}$$
 renorm. scale ~ 1 GeV

Method	λ_B [MeV]	Ref.
2pt SR in HQET,LO	$\simeq 350$	Grozin,Neubert
2pt SR in HQET, NLO	440 ± 110	Braun, Ivanov,Korchemsky
LCSR for $B \to \gamma l \nu_l$	$\simeq 600$	Ball, Kou
"inverted" LCSR for $B \to \pi$	460 ± 160	A.K.,Mannel, Offen
first moments +Ansatz	480 ± 55	Lee, Neubert

Summary

* B-meson DA: ϕ_{+}^{B} an important element of factorization in exclusive *B* decays; ϕ_{-}^{B} determines the "soft" $B \to \pi$ form factor * what is the role of 3-particle DA's in phenomenology?

* QCD sum rules (CZ type, LCSR) combined with model-independent relations agree on λ_B , start getting σ_B and the shape of ϕ_+^B , can we make uncertainties smaller ?

* is it possible to estimate λ_B and other parameters on the lattice?

* consistent definitions of DA's in HQET (SCET) what is ϕ_{+}^{B} at finite m_{b} ?, is there a radiative tail?