Customizing CKM Fitter

Sebastian Jäger, Martin Gorbahn
RWTH Aachen, Universität Karlsruhe

- Stucture of CKM Fitter
- Data Cards and FORTRAN
- Theoretical Expressions
- A new Calculation
- An Example: $K^{+} \rightarrow \pi^{+} \bar{\nu} \nu$
- Adding P_{c} to CKM Fitter
- "Flat" and "Gaussian"
- Summery

SFB Meeting

Structure of CKM Fitter

```
Data Cards
```


Numerical Implementation

Dictionary

CkmDico.F

- Dictionary for the parameters defined in the Data Cards: Fitting and Prediction
- Dictionary for global variables
- Theory parameters are accessed with
Double Precision sm_EpsK

```
calc = (whatDoYouWant.ne.
                                    IWantNothing)
```

Function getParFrom Name (name, whatDoYouWant)
If (name.eq.'EpsK') Then
If (calc) getTheoryFromName =
sm_EpsK (error)

Implementation of Theoretical Expressions

- Implemented in:
- CkmKRare.F, CkmKRMix.F, ...
- ϵ_{K} is a typical implementation
- Get theory parameters
- Wolfenstein or PDG ?
- Calculate Theoretical Expression
- Flag \rightarrow Calculate Errors

```
Double Precision Function
sm_EpsK ( dsm_EpsK )
```

$\mathrm{mt}=$ getParFromName ('mt', IWantFitValue)
BK $=$ getParFromName (${ }^{\prime} \mathrm{BK}^{\prime}$, IWantFitValue)

If (CkmType.eq. Wolfenstein) Then End If

What to do with a new calculation?

Our Little Project: $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$ at NNLO

So Far Under Control:

μ_{c} Dependence

- $X\left(x_{t}\right)$: The top contribution
- No large logs
- Scale uncertainty at two loop of $\pm 1 \%$
- Contributions of higher dimensional Ops
- Calculated using CHPT [lsidori et al. ${ }^{0.5]}$
$-P_{c}(X) \rightarrow P_{c}(X)+0.04 \pm 0.02$
- $P_{c}(X)$: The charm contribution at NLO
- Contains a large log $\ln \frac{m_{c}}{M_{W}}$
- Large Logs are resummed up to NLO $P_{c}(X)=.37 \pm .04_{\mathrm{th}} \pm .03_{m_{c}} \pm .01_{\alpha_{s}}$
- New Calculation at NNLO [Buras, mg, Haisch, Nierste '05]
- Reduces scale dependence drastically $P_{c}(X)=.37 \pm .01_{\mathrm{th}} \pm .03_{m_{c}} \pm .01_{\alpha_{s}}$
- Include it into CKMFitter

Our little project

Include the New NNLO calculation into the $K^{+} \rightarrow \pi^{+} \bar{\nu} \nu$ function of CKM Fitter

- Add a numerical Approximation of P_{c} to the $K^{+} \rightarrow \pi^{+} \bar{\nu} \nu$ function
- Now we can do a 1D Frequentist Fit
- The dominant error is due to the uncertainty in m_{c}, which has a flat error
- We can also use "Gaussian" errors with CKM Fitter

Make P_{c} accessible

- Data Cards:
- constrNVar $=55+1$,
- constrName $={ }^{\prime}{ }^{\prime} \mathrm{PcKPi}^{\prime}$,
- ...
- CkmDico.F

If (name.eq.'PcKpi') Then
If (calc) getTheoryFromName $=$ bghn_PcKpi(error)

Formula for P_{c}

- Implement P_{c} in a numerical approximation
- New "Model" Parameters, e.g. μ_{c}, do appear
- μ_{c} has to be implemented into the datacards, and can be accessed via the getParFromName function in CKMDico.F
- μ_{c} should have a "flat" error but we can also study a "Gaussian" one

Double Precision Function

 bghn_PcKpi(dsm)mucScale $=$ getParFromName ('mucScale ', IWantFitValue)
bghn_PcKpi $=$ $(0.378+0.622 *(\mathrm{mc}-1.3)-\ldots) *$ $0.2248 * * 4$ /lambda $* * 4$

Return

End

P_{c} with "flat" and "Gaussian" errors

- The dominant error is due to the error in m_{c}
- the flat error in m_{c} is dominating the error in P_{c} :
$P_{c}=0.339_{-0.025}^{+0.074}$ (only illustrative)

- Taking the error in m_{c} and the other theoretical errors Gaussian we arrive at a more narrow curve:
$P_{c}=0.364_{-0.033}^{+0.038}$ (only illustrative)

Summary

- CKM Fitter provides
- Statistical treatment of experimental errors
- consistent "scan" over theoretical parameters
- A huge implementation of physical observables
- Can be customized by
- simply changing the function of a theoretical prediction
- Adding a new observable to the Data Cards and the dictionary
- Can we easily change the definition of an theoretical model error to a statistical one?

