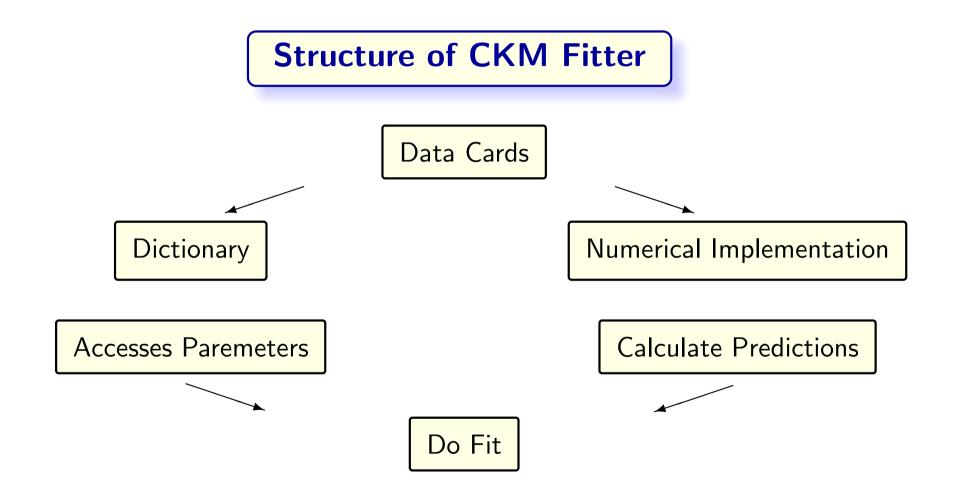
Customizing CKM Fitter

Sebastian Jäger, Martin Gorbahn RWTH Aachen, Universität Karlsruhe

- Stucture of CKM Fitter
- Data Cards and FORTRAN
- Theoretical Expressions
- A new Calculation

- An Example: $K^+ \rightarrow \pi^+ \bar{\nu} \nu$
- Adding P_c to CKM Fitter
- "Flat" and "Gaussian"
- Summery

SFB Meeting



Dictionary

CkmDico.F

- Dictionary for the parameters defined in the Data Cards: Fitting and Prediction
- Dictionary for global variables
- Theory parameters are accessed with

• Theory predictions (e.g. ϵ_K)

Double Precision sm_EpsK

error = 0.D0

```
calc = (whatDoYouWant.ne.
IWantNothing)
```

Function getParFromName

(name, whatDoYouWant)

If (name.eq.'EpsK') Then
If (calc) getTheoryFromName =
 sm_EpsK(error)

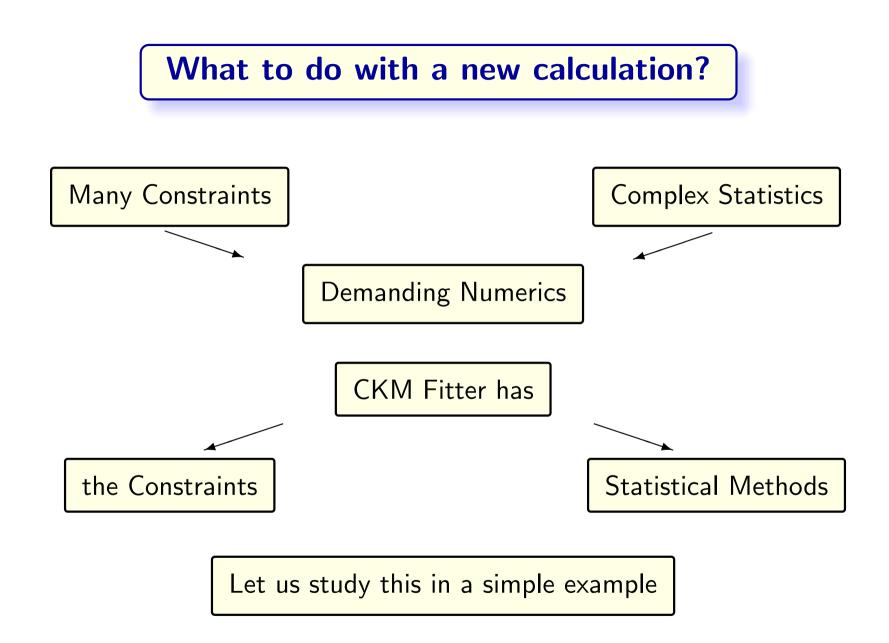
Implementation of Theoretical Expressions

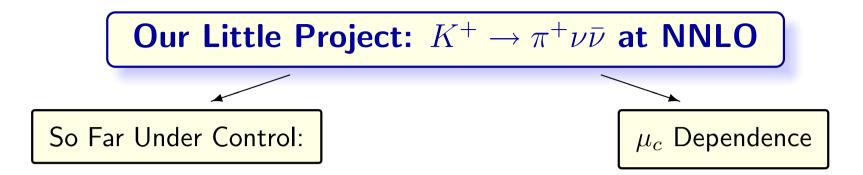
- Implemented in:
 - CkmKRare.F, CkmKRMix.F, ...
- ϵ_K is a typical implementation
 - Get theory parameters
 - Wolfenstein or PDG ?
 - Calculate Theoretical Expression
 - $\ \mathsf{Flag} \to \mathsf{Calculate} \ \mathsf{Errors}$

Double Precision Function sm_EpsK(dsm_EpsK)

BK = getParFromName('BK', IWantFitValue)

If (CkmType.eq. Wolfenstein) Then ... End If





- $X(x_t)$: The top contribution
 - No large logs
 - Scale uncertainty at two loop of $\pm 1\%$
- Contributions of higher dimensional Ops
 - Calculated using CHPT [Isidori et al. '05]
 - $-P_c(X) \rightarrow P_c(X) + 0.04 \pm 0.02$

- $P_c(X)$: The charm contribution at NLO
 - Contains a large log $\ln \frac{m_c}{M_W}$
 - Large Logs are resummed up to NLO $P_c(X) = .37 \pm .04_{\text{th}} \pm .03_{m_c} \pm .01_{\alpha_s}$
- New Calculation at NNLO [Buras, MG, Haisch, Nierste '05]
 - Reduces scale dependence drastically $P_c(X) = .37 \pm .01_{\text{th}} \pm .03_{m_c} \pm .01_{\alpha_s}$
- Include it into CKMFitter

Our little project

Include the New NNLO calculation into the $K^+ \rightarrow \pi^+ \bar{\nu} \nu$ function of CKM Fitter

- Add a numerical Approximation of P_c to the $K^+ \rightarrow \pi^+ \bar{\nu} \nu$ function
- Now we can do a 1D Frequentist Fit
- The dominant error is due to the uncertainty in m_c , which has a flat error
- We can also use "Gaussian" errors with CKM Fitter

Make P_c accessible

- Data Cards:
 - constrNVar = 55 + 1,
 - constrName = 'PcKPi',
- CkmDico.F

. . .

If (name.eq.'PcKpi') Then
If (calc) getTheoryFromName =
 bghn_PcKpi(error)

Formula for P_c

- Implement P_c in a numerical approximation
- New "Model" Parameters, e.g. μ_c , do appear
- μ_c has to be implemented into the datacards, and can be accessed via the getParFromName function in CKMDico.F
- μ_c should have a "flat" error but we can also study a "Gaussian" one

```
Double Precision Function
    bghn_PcKpi( dsm )
....
mucScale = getParFromName
    ( 'mucScale ', IWantFitValue )
....
bghn_PcKpi =
    (0.378 + 0.622*(mc - 1.3) - ...)*
    0.2248**4/lambda**4
```

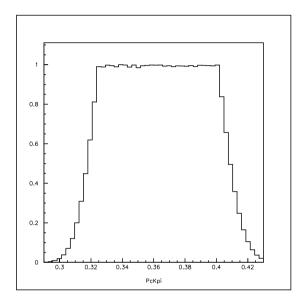
```
Return
End
```

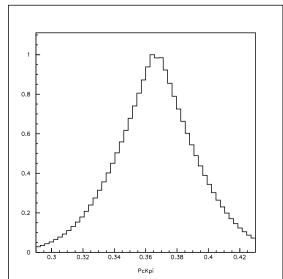
P_c with "flat" and "Gaussian" errors

- The dominant error is due to the error in m_c
- the flat error in m_c is dominating the error in P_c : $P_c = 0.339^{+0.074}_{-0.025}$ (only illustrative)

• Taking the error in m_c and the other theoretical errors Gaussian we arrive at a more narrow curve:

 $P_c = 0.364 \substack{+0.038 \\ -0.033}$ (only illustrative)





Summary

- CKM Fitter provides
 - Statistical treatment of experimental errors
 - consistent "scan" over theoretical parameters
 - A huge implementation of physical observables

- Can be customized by
 - simply changing the function of a theoretical prediction
 - Adding a new observable to the Data
 Cards and the dictionary
 - Can we easily change the definition of an theoretical model error to a statistical one?