

 $\langle \pi(p') | \bar{u}_T = \overline{B}(p) = \frac{\Pi_{\theta}^2 - m_{\pi}^2}{q^2} q^{\pi} + \frac{\Pi_{\theta}^2 - m_{\pi}^2}{q^2} q^{\pi}$

also tensor current $\rightarrow f_T$ vector mesons $\rightarrow V$, $A_{0,1,2}$, $T_{1,2,3}$

 $q^2 \sim M_B^2$, E_{π} small : $f \sim M_B^{-1/2}$ (HOET) $q^2 \sim 0$, $E_{\pi} \sim \frac{M_B}{2}$: $f \sim M_B^{-3/2}$ subject of this discussion

 $\frac{d\Gamma(B \rightarrow \pi \ell v)}{dq^2} \longrightarrow$

 $Br(B \rightarrow \pi\pi) \longrightarrow$

 $|V_{ub}f|^2$ $s_{f} \rightarrow s_{V_{ub}}|$ Want $s_{f} < 10\%$ -1-

- What can be done in the heavy quark limit?
 - Status, open problems

*

* f(0) mainly from QCD sum rules - how reliable?

Heavy quark expansion

ūГЬ

(* Jeff

Z C' + Jeff

1) Relevant external momenta (B rest frame)

B consists of soft stuff

 $P_{b} = mv + e$ $e_{i} \sim (\Lambda, \Lambda, \Lambda)$

π consists of collinear stuff

 $k_{i} \sim (m_{b}, \Lambda, \frac{\Lambda^{2}}{m_{b}})$ $k = n_{i}k \frac{n_{i}}{2} + k_{1} + n_{i}k \frac{n_{t}}{2}$

s c

virtuality m. - hard-collinear

- Modes of SCETI
- 2) Relevant operators

question of M_m power counting in SCET

ONE local operator (for m) C(A0) (E)] = hv ūΓЬ = - 2iEre & ALimphy dr(C(B4)) (d(2Er)e a non-local short-distance operator (light-cone) coefficients momentum t ↔ fraction 1-τ T Repeat these steps for the SCETI operators. Consider the second term Integrate collinear 2 short-distance (hard-collinear) fluctuations Soft Scale V mp. r. Power counting at leading order in 1/mb for B→x Sd(2Er) e ZiErz & AL (m,)hv = $\left(\frac{d}{d} \left(\frac{1}{2}; v_{j} \right) \right) \left[\frac{1}{9} \left(\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{$ short-distance **Φ**_π(v) PB(U) coefficient <π ... 10> <01...1B>

soft- collinear factorization

$$f_{\pm,0,T}(E) = \begin{pmatrix} (h_0) \\ C_1(E) \end{pmatrix} g(E)$$

$$f_{\pm,0,T}(E) = \begin{pmatrix} (h_0) \\ C_1(E) \end{pmatrix} g(E)$$

$$(HB, Feldmann '00; '03; Lange, Neubert '03)$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

$$f_{\pm} \int dvsdv \left[\int dr C_1^{(B_1)} (E,r) J(r;v,w) \right] \varphi_{B(w)} \varphi_{\pi(v)}$$

- 5-

g(E) unknown

$$f_+ \rightarrow g \rightarrow f_0, f_T$$

QCDSR
dota?

vector mesons

$$\bigvee \longrightarrow \mathfrak{S}_{11}, \mathfrak{S}_{1} \longrightarrow A_{0}, \mathfrak{A}_{1} + A_{2}, \mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}$$

Solvedv... must converge!

- only $\int \frac{d\omega}{\omega} 2n^n \omega \phi_B(\omega)$ can appear (power counting) finite (proof?)
- if Solv were endpoint-divergent one would need a regulator to factorize s from c. But there is no soft divergence

- confirmed in 1-loop calculations

Corrections to the $B \to \pi$ and $B \to \rho$ form factor ratios as a function of q^2 . The ratios equal 1 in the absence of radiative corrections. Solid (black) line: full result, including NLO and resummed leading-logarithmic correction to spectator-scattering; Long-dashed (blue): without NLO+LL correction to spectator-scattering; Dash-dotted (red): without any spectator-scattering term. Dashed (black): QCD sum rule calculation. The lower right panel shows the two form factor ratios that equal 1 at leading power. For comparison, the QCD sum rule results for these two ratios are shown (upper (blue) line refers to A_1/V , lower (black) line to T_2/T_1 .

Ball/Braun98 (lower black-dashed) vs Ball/Zwicky04 (upper black-dashed) for $\frac{m_B}{2E}T_2(E) - T_3(E)$ divided by $\frac{m_B+m_V}{2E}A_1(E) - \frac{m_B-m_V}{m_B}A_2(E)$.

Open problems

implications of this for QCD sum rules × $(1/m_b expansion, twist-expansion, what is <math>\phi_{\pi}(1)$, light-cone dominance?) Thorsten's talk

understanding < x] Ehvi B 2 ~ 8 *

> (large logs? soft overlap? soft-collinear factorization)

We didn't match ghr. Why?

 \longrightarrow [$\overline{g}g$][\overline{q}_{sh}] + [$\overline{g}A_{1}g$][$\overline{q}h_{v}$] + [$\underline{g}g$][$\overline{q}A_{1}h_{v}$ =hv

- all leading power
- no twist expansion (3particle amps)
- Convolution integrals diverge saft- collinear factorization C₃ breaks down

Open problem :

ds (Ahc) * log mb ~ 1 log mu me How to sum these logs? Even for B_-2c or [Me]-[ee]! Key to understanding factorization & soft overlap!

cf: KLN theorem (1964) from understanding log <u>mai</u> in muon decay