

$$
\begin{aligned}
& \left\langle\pi\left(p^{\prime}\right)\right| \bar{u} \gamma^{\mu} b|\bar{B}(p)\rangle= \\
& \quad f_{+}\left(q^{2}\right)\left(p^{\mu+}+p^{\prime \mu}-\frac{M_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}\right)+f_{0}\left(q^{2}\right) \frac{M_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}
\end{aligned}
$$

also tensor current $\rightarrow f_{T}$

$$
\text { vector mesons } \rightarrow \quad V, A_{0,1,2}, T_{1,2,3}
$$

$$
\begin{aligned}
& \frac{d \Gamma\left(B \rightarrow \pi l_{v}\right)}{d q^{2}} \quad \longrightarrow \quad\left|V_{u b} f\right|^{2} \\
& \operatorname{Br}(B \rightarrow \pi \pi) \quad \longrightarrow \quad \delta f \rightarrow \delta\left|V_{u b}\right| \\
& \\
& \\
& \\
& \text { Want } \delta f<10 \%
\end{aligned}
$$

* What can be done in the heavy quark limit?
- Status, open problems
* $\quad f(0)$ mainly from $Q C D$ sum rules - how reliable?

Heavy quark expansion

1) Relevant external momenta (\bar{B} rest frame)

$$
\begin{aligned}
& \bar{B} \text { consists of soft stuff } \\
& p_{b}=m v+e \\
& e_{i} \sim(\Omega, \Omega, \Omega) \\
& \pi \text { consists of collinear } \\
& \text { stuff } \\
& k_{i} \sim\left(m_{b}, \Lambda, \frac{\Lambda^{2}}{m_{b}}\right) \\
& k=n_{i} k \frac{n_{-}}{2}+k_{1}+n_{-} k \frac{n_{+}}{2}
\end{aligned}
$$

Modes of SCET I
2) Relevant operators
question of Λ / m_{b} power counting in SCET

at leading order in $1 / m_{b}$

Repeat these steps for the SCET I operators.
Consider the second term

Power counting

$$
\begin{aligned}
& \int \frac{d\left(2 \sigma_{r}\right)}{2 \pi} e^{-2 i E r \tau} \bar{\xi} A_{\perp}^{(n c)}\left(m_{r}\right) h_{v} \\
& \text { at leading order in } 1 / m_{b} \\
& \text { for } B \rightarrow X \\
& =\int d u d v(J(\tau ; v, s) \\
& \text { short-distance } \\
& \text { coefficient } \\
& \begin{array}{cc}
\downarrow & \downarrow \\
\phi_{\pi}(v) & \phi_{B}(u) \\
\langle\pi| \ldots|0\rangle & \langle 0| \ldots|\bar{B}\rangle
\end{array} \\
& \text { soft-collinear factorization! }
\end{aligned}
$$

matrix element of ihs

$$
\begin{aligned}
& \underbrace{f_{+, 0, T}}_{i}(E)=C_{i(E)}^{C_{i(E)}} \xi(E) \\
& \text { (MB, Feldmann '00;'03; } \\
& \text { Large, hubert '03') } \\
& +\int d u d v\left[\int d \tau C_{i}^{(B)}(E, \tau) J(\tau ; v, w)\right] \phi_{B(u)} \phi_{\pi(v)} \\
& \text { tree (Cakes et al. 198) } \\
& \text { 1-loop (MB,Fldmann. } 100 \\
& \text { Baveretal '00') } \\
& \text { tree } \simeq \sigma\left(d_{s}\right) \quad\left(\pi B, \text { Feldmann }{ }^{\prime} \infty\right) \\
& \text { 1-lop (MB, Kino, Yang }{ }^{\prime} 04 \text {, } \\
& \text { MB, Yang ' } 05 \text {; } \\
& \text { Hill et al. } 104 \\
& \text { Kirilen' }{ }^{\prime} 05 \text {) }
\end{aligned}
$$

$\zeta(E)$ unknown

$$
\begin{aligned}
& f_{+} \underset{\substack{\text { QCDSR } \\
\text { data? }}}{\longrightarrow f_{0}, f T} \\
& \text { vector mesons } \\
& V \\
& \text { " } A_{1}-A_{2} \text { " } \longrightarrow \xi_{11}, \xi_{1} \longrightarrow A_{0}, " A_{1}+A_{2} ", T_{1}, T_{2}, T_{3}
\end{aligned}
$$

$\int d n d v .$. must converge!

- only $\int \frac{d w}{w} 2^{n} n^{n} \phi_{B}(\omega)$ can appear (power counting) finite (proof?)
- if $\int d v$ were endpoin't-divergent one could need a regulator to factorize s from C. But there is no soft divergence
- confirmed in 1-loop calculations

Corrections to the $B \rightarrow \pi$ and $B \rightarrow \rho$ form factor ratios as a function of q^{2}. The ratios equal 1 in the absence of radiative corrections. Solid (black) line: full result, including NLO and resummed leading-logarithmic correction to spectator-scattering; Long-dashed (blue): without NLO+LL correction to spectator-scattering; Dash-dotted (red): without any spectatorscattering term. Dashed (black): QCD sum rule calculation. The lower right panel shows the two form factor ratios that equal 1 at leading power. For comparison, the QCD sum rule results for these two ratios are shown (upper (blue) line refers to A_{1} / V, lower (black) line to T_{2} / T_{1}.

Ball/Braun98 (lower black-dashed) vs Ball/Zwicky04 (upper black-dashed) for $\frac{m_{B}}{2 E} T_{2}(E)-$ $T_{3}(E)$ divided by $\frac{m_{B}+m_{V}}{2 E} A_{1}(E)-\frac{m_{B}-m_{V}}{m_{B}} A_{2}(E)$.

Open problems

* implications of this for $Q C D$ sum rules ($1 / m_{6}$ expansion, tusist-expansion, what is $\phi_{\pi}^{\prime}(1)$, light -cone dominance?)
\longrightarrow Thorsten's talk
* understanding $\langle\pi| \bar{\xi} h_{V}|\bar{B}\rangle_{\operatorname{scEEF}_{I}} \xi$ (large logs? soft overlap? soft-collinear factorization)

We didn't match gihv. Why?

$$
\bar{\xi} h_{v} \longrightarrow[\bar{\xi} \xi]\left[\bar{q}_{s} h_{v}\right]+\left[\bar{\xi} A_{\perp} \xi\right]\left[\bar{q} h_{v}\right]+\left[\bar{\xi}_{\xi}\right]\left[\bar{q} A_{\perp} h_{v}\right.
$$

- all leading power
- no twist expansion (3particle amps)
- Convolution integrals diverge
\rightarrow soft-collinear factorization breaks down

$$
\int \frac{d u}{u^{2}} \phi_{\pi}(u) \quad \begin{aligned}
& \text { dominated by } \\
& u \simeq 0
\end{aligned}
$$

Naive picture

hard-scattering

both of the same order

- $\quad \xi(E)$ is not only the soft overlap
- -he
does not exist as a configuration in the SCET pion

$$
\frac{h c}{\frac{\xi_{n c}}{s} c}
$$

- or (Becho, Nimbert '03)
depends on regularization

Toy model $\quad B_{c} \rightarrow \eta_{c} \quad m_{c} \sim$ soft scale Muonium \rightarrow Positronium

Open problem:

$$
\alpha_{s}\left(\mu_{h c}\right) * \log \frac{m_{b}}{\Lambda} \sim 1
$$

How to sum these logs? $\int \log \frac{m_{\mu}}{m_{2}}$
Even for $B_{c} \rightarrow \eta_{c}$ or $[\mathrm{me}] \rightarrow[\mathrm{ee}]$!
Key to undentandirig factorization \& soft overlap!
cf: KLN theorem (1964)
from understanding $\log \frac{m_{\mu}}{m_{e}}$ in muon decay

