Bhabha scattering at the ILC

Klaus Mönig

What is the ILC?

The International Linear Collider will be the next e^+e^- collider based on superconducting technology:

- first phase: $\sqrt{s} \le 500 \,\text{GeV}$
- upgrade: $\sqrt{s} \approx 1 \,\text{TeV}$
- luminosity $\mathcal{L} \approx 3 5 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1} \Rightarrow \sim 300 500 \text{ fb}^{-1}/\text{year}$
- polarised electron beams (P = 80-90%) and, as an option, polarised positron beams (P = 40-60%).
- GigaZ option: 10^9 events at the Z pole with polarised beams
- Time scale:
 - Conceptual design by end 2006
 - International Liner Collider Technical Design Report by 2007
 - $-\operatorname{Site}$ selection and approval in 2008
 - $-\operatorname{Begin}$ data taking: 2015

Expected statistics at the International Linear Collider (ILC)

• few-10⁴ e⁺e⁻ $\rightarrow HZ/year$ at $\sqrt{s} \approx 350 \,\text{GeV} \ (m_{\text{H}} \approx 120 \,\text{GeV})$

•
$$10^5 e^+e^- \rightarrow t\bar{t}/year$$
 at $\sqrt{s} \approx 350 \,\text{GeV}$

- $5 \cdot 10^5 e^+e^- \rightarrow q\bar{q}/year$ at $\sqrt{s} \approx 500 \,\text{GeV}$ (no rad. ret)
- 10⁵ e⁺e⁻ $\rightarrow \mu^+\mu^-$ /year at $\sqrt{s} \approx 500 \,\text{GeV}$ (no rad. ret)
- 10⁶ e⁺e⁻ \rightarrow W⁺W⁻/year at $\sqrt{s} = 500 1000 \,\text{GeV}$

•
$$10^9 e^+e^- \rightarrow Z/year$$
 at $\sqrt{s} \approx 91 \text{ GeV}$

New problem at the ILC: beamstrahlung

- Beams at IP are extremely collimated with many electrons/bunch
 - \rightarrow very high charge density
 - \Rightarrow Electrons of one bunch radiate against the coherent field of the other bunch (Beamstrahlung)
- Average energy loss for colliding e⁺e⁻- $_{\varkappa}$ pairs at 500 GeV: $\sim 1.5\%$
- For continuum processes beamstrahlung comparable to ISR, however with shorter tails
- Beamstrahlung has to be included in every generator!

The Detector at the ILC

The forward region of the detector

BeamCal

- 4 mrad $< \theta < 25$ mrad
- huge background from beam-beam interactions
- can only be used for machine tuning and $\gamma\gamma$ veto

LumiCal

- $25 \operatorname{mrad} < \theta < 80 \operatorname{mrad}$
- almost no background
- will be used for a precision luminosity measurement

Bhabha scattering and polarisation

The Luminosity Measurement at ILC

What precision do we need?

Luminosity precision is determined by statistics of interesting processes

• $e^+e^- \rightarrow W^+W^-$: ~ 10 pb at $\sqrt{s} = 340 \text{ GeV}$ scaling with 1/s $\mathcal{O}(10^6)$ events $\rightarrow \text{need } 10^{-3}$ precision

•
$$e^+e^- \rightarrow f\bar{f}: \sim 5 \text{ pb at } \sqrt{s} = 340 \text{ GeV scaling with 1/s}$$

 $\longrightarrow \mathcal{O}(10^6) \text{ events } \longrightarrow \text{need } 10^{-3} \text{ precision}$

• GigaZ: aim for 10^9 hadronic Z decays. Relevant physics quantities (except N_{ν}) need also leptonic decays (10% of hadronic decays) med 10^{-4} precision

$e^+e^- \to f \overline{f}$

 $e^+e^- \rightarrow f\bar{f}$ is sensitive to physics at very high scales (compositness, Z', extra space dimensions)

Sensitivity is mainly via interference with Standard Model amplitude $\Longrightarrow \propto 1/M^2$

All observables (cross section, left-right asymmetry, forward-backward asymmetry) are important

Systematic errors (e.g. luminosity) effect results significantly

Z' limits in different models

GigaZ

GigaZ = 10^9 Z at $\sqrt{s} \approx m_Z$ Main aim: $\sin^2 \theta_{eff}^l$ determination \rightarrow no \mathcal{L} dependence Important additional information from "lineshape" parameters $\Gamma_Z, \sigma_0^{\text{had}}, R_l$

Interesting information is obtained from combination of these parameters:

$$\sigma_0^{\text{had}} = \frac{12\pi \Gamma_e \Gamma_{\text{had}}}{m_Z} \frac{\Gamma_e \Gamma_{\text{had}}}{\Gamma_Z^2}$$
$$R_l = \frac{\Gamma_{\text{had}}}{\Gamma_l}$$

 \Rightarrow need all parameters with about the same accuracy

- Γ_Z : difficult to estimate (beam energy, beamstrahlung, beamspread) but $\Delta\Gamma_Z = 1 \text{ MeV} (\Delta\Gamma_Z/\Gamma_Z = 4 \cdot 10^{-4})$ seems realistic
- $R_l: \Delta R_l/R_l = 10^{-4}$ from lepton statistics
- → need lumi error (exp+theo) $\Delta \mathcal{L}/\mathcal{L} \sim 2 \cdot 10^{-4}$

- small axis: $\sin^2 \theta_{eff}^l$ \Rightarrow no luminosity dependence
- large axis: $m_{\rm W}$ if $\varepsilon_2 = U = SM$, otherwise Γ_l \Rightarrow luminosity precision essential

Important in interpretations outside SM! The Luminometer (current planning)

- Calorimeter with high granularity
- No tracking in front
- "→ Will do "calorimetric measurement", i.e. no separation of nearby electron and photon
 - \bullet 25 mrad $<\theta<$ 80mrad
 - All similar to LEP

Theoretical uncertainties

- Uncertainty was $\Delta \mathcal{L} = 0.05\%$ at LEP
- \bullet Sufficient for high energy, if constant with \sqrt{s}
- Definitely too large at GigaZ

Polarisation effects

- Asymmetry $3 \cdot 10^{-4}$ at 25 mrad and $3 \cdot 10^{-3}$ at 80 mrad ($\mathcal{P}_{e^+}\mathcal{P}_{e^-} = 1$)
- Marginal effect at for high energy precision
- Relevant for GigaZ
- Polarisation affects also asymmetries where luminosity normally cancels:
 - -0.1% asymmetry affects $A_{\rm LR}$ at GigaZ by $0.36\cdot 10^{-4}=1.2\sigma$ using the Blondel scheme
 - also at high energy the beam polarisation can be measured with the Blondel scheme
 - -0.1% asymmetry affects the measured asymmetry by $0.5\cdot 10^{-3}=0.5\sigma$

Reconstruction of the Luminosity Spectrum

- Since the beam parameters will not be known to with high precision the spectrum of beamstrahlung has to be measured from data
- The energy loss of the outgoing beam is much larger than for the colliding particles
- For this reason the luminosity spectrum has to be measured from annihilation data
- \bullet Since one is interested in a $<10^{-4}$ precision this cannot be done with calorimeters
- Method of choice: Bhabha acolinearity in the forward region:
 - -very simple final state
 - $-\operatorname{very}$ high cross section

The acolinearity method

• Assume only one photon is radiated $\rightarrow \sqrt{s'}$ can be calculated from fermion angles only

$$\frac{\sqrt{s'}}{\sqrt{s}} = \sqrt{\frac{\sin\theta_1 + \sin\theta_2 + \sin(\theta_1 + \theta_2)}{\sin\theta_1 + \sin\theta_2 - \sin(\theta_1 + \theta_2)}}$$

- The radiation in both directions can be unfolded in the fit
- This requires the knowledge of correlations
- ISR/FSR has to be known from theory

Requirements from theory

- The radiation has to be precise on this level
- The acolinearity method uses the charged tracks only
 need to have an exact description of FSR and ISR/FSR interference

Physics with large angle Bhabhas at the ILC

- Large angle Bhabha scattering can be used as a general probe for new physics
- The most general description of this are contact interactions
- $\mathcal{O}(10^5)$ events per year are expected requiring the corresponding theoretical uncertainty
- Polarisation is very important to distinguish between the different helicity structures
- As a unique feature of Bhabha scattering the J=0 state can isolate the t-channel for vector currents and scalar s-channel exchange

<u>Results</u>

- Contact interaction limits of $\Lambda > 60 - 80$ TeV can be reached, depending on the helicity structure ($\sqrt{s} = 500$ GeV, $\mathcal{L} = 500$ fb⁻¹)
- These limits are better than and complementary to muons
- In principle similar limits can be reached for e⁻e⁻, do we have Moller scattering under control theoretically?

Contact interaction limits from Bhabha scattering

Pankov, Paver (TeV) 08 $e^+e^-\sqrt{s} = 500 GeV$ $\Lambda_{\rm IR}$ <70 Λ_{LL} 60 Λ_{RR} 50 40 30 20 100 250 50 150 200 300 350 400 450 500 $L_{int} (fb^{-1})$

Conclusions

- Bhabha scattering is needed at the ILC for technical measurements (luminosity, luminosity spectrum) and for physics
- The required precision is up to 10^{-4}
- A few new technical requirements are needed to use the theory predictions at the ILC:
 - beamstrahlung
 - -polarisation of both beams
 - non calorimetric measurements
- The 2-loop calculations are definitely a huge step towards these goals