
Bhabha scattering at the ILC

Klaus Mönig

Karlsruhe, April 2005 1 Klaus Mönig



What is the ILC?

The International Linear Collider will be the next e+e− collider based on
superconducting technology:

• first phase:
√
s ≤ 500 GeV

• upgrade:
√
s ≈ 1 TeV

• luminosity L ≈ 3− 5 · 1034cm−2s−1 ⇒∼ 300− 500 fb−1/year

• polarised electron beams (P = 80-90%) and, as an option, polarised
positron beams (P = 40-60%).

•GigaZ option: 109 events at the Z pole with polarised beams

• Time scale:

– Conceptual design by end 2006

– International Liner Collider Technical Design Report by 2007

– Site selection and approval in 2008

– Begin data taking: 2015
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Expected statistics at the International Linear Collider (ILC)

• few·104 e+e−→ HZ/year at
√
s ≈ 350 GeV (mH ≈ 120 GeV)

• 105 e+e−→ tt̄/year at
√
s ≈ 350 GeV

• 5 · 105 e+e−→ qq̄/year at
√
s ≈ 500 GeV (no rad. ret)

• 105 e+e−→ µ+µ−/year at
√
s ≈ 500 GeV (no rad. ret)

• 106 e+e−→W+W−/year at
√
s = 500− 1000 GeV

• 109 e+e−→ Z/year at
√
s ≈ 91 GeV
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New problem at the ILC: beamstrahlung

• Beams at IP are extremely collimated
with many electrons/bunch
→ very high charge density
⇒ Electrons of one bunch radiate against
the coherent field of the other bunch
(Beamstrahlung)

•Average energy loss for colliding e+e−-
pairs at 500 GeV: ∼ 1.5%

• For continuum processes beamstrahlung
comparable to ISR, however with shorter
tails

• Beamstrahlung has to be included in ev-
ery generator!

Normalised e− spectrum
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The Detector at the ILC

Hermetic detector with full
tracking and calorimetry
above θ = 7◦

Efficient electron identifica-
tion in the full tracking range

Unambiguous charge identi-
fication in the full tracking
range

The concept for a large detector with
gaseous tracking
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The forward region of the detector

BeamCal

• 4 mrad < θ < 25mrad

• huge background from
beam-beam interactions

• can only be used for ma-
chine tuning and γγ veto

LumiCal

• 25 mrad < θ < 80mrad

• almost no background

• will be used for a precision
luminosity measurement
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Bhabha scattering and polarisation

•At ILC both beams can be po-
larised

• Even for pure QED there is a
cross section asymmetry between
parallel and antiparallel beams
proportional to Pe+Pe− (ILC:
Pe+Pe− ∼ 0.5)

• This asymmetry is huge in the cen-
tre and small but sizable in the for-
ward region

• Polarisation of both beams has to
be included in the calculations and
the generators

A =
σ(⇒)−σ(�)
σ(⇒)+σ(�)

as a function of θ

for QED only
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The Luminosity Measurement at ILC

What precision do we need?

Luminosity precision is determined by statistics of interesting processes

• e+e−→W+W−: ∼ 10 pb at
√
s = 340 GeV scaling with 1/s

ß O(106) events ßneed 10−3 precision

• e+e−→ ff: ∼ 5 pb at
√
s = 340 GeV scaling with 1/s

ß O(106) events ßneed 10−3 precision

•GigaZ: aim for 109 hadronic Z decays. Relevant physics quantities
(except Nν) need also leptonic decays (10% of hadronic decays)
ß need 10−4 precision
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e+e−→ ff

e+e− → ff is sensitive to physics at very high scales (compositness, Z’,
extra space dimensions)

Sensitivity is mainly via interference with Standard Model amplitude
ß ∝ 1/M2

All observables (cross section, left-right asymmetry, forward-backward
asymmetry) are important

Systematic errors (e.g. luminosity) effect results significantly
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Z’ limits in different models
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GigaZ

GigaZ = 109 Z at
√
s ≈ mZ

Main aim: sin2 θleff determination ß no L dependence

Important additional information from “lineshape” parameters
ΓZ, σ

had
0 , Rl

Interesting information is obtained from combination of these parameters:

σhad
0 =

12π

mZ

ΓeΓhad

Γ2
Z

Rl =
Γhad

Γl

⇒ need all parameters with about the same accuracy
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• ΓZ: difficult to estimate (beam energy, beamstrahlung, beamspread)
but ∆ΓZ = 1 MeV (∆ΓZ/ΓZ = 4 · 10−4) seems realistic

•Rl: ∆Rl/Rl = 10−4 from lepton statistics

ß need lumi error (exp+theo) ∆L/L ∼ 2 · 10−4

Gain of GigaZ:
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• small axis: sin2 θleff
⇒ no luminosity dependence

• large axis: mW if ε2 = U = SM ,
otherwise Γl
⇒ luminosity precision essential
Important in interpretations out-
side SM!

Karlsruhe, April 2005 12 Klaus Mönig



The Luminometer (current planning)

• Calorimeter with high granularity

•No tracking in front

ß Will do “calorimetric measurement”, i.e. no separation of nearby elec-
tron and photon

• 25 mrad < θ < 80mrad

•All similar to LEP

Theoretical uncertainties

•Uncertainty was ∆L = 0.05% at LEP

• Sufficient for high energy, if constant with
√
s

•Definitely too large at GigaZ
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Polarisation effects

•Asymmetry 3 · 10−4 at 25 mrad and 3 · 10−3 at 80 mrad (Pe+Pe− = 1)

•Marginal effect at for high energy precision

•Relevant for GigaZ

• Polarisation affects also asymmetries where luminosity normally can-
cels:

– 0.1% asymmetry affects ALR at GigaZ by 0.36 · 10−4 = 1.2σ using
the Blondel scheme

– also at high energy the beam polarisation can be measured with the
Blondel scheme

– 0.1% asymmetry affects the measured asymmetry by 0.5·10−3 = 0.5σ
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Reconstruction of the Luminosity Spectrum

• Since the beam parameters will not be known to with high precision
the spectrum of beamstrahlung has to be measured from data

• The energy loss of the outgoing beam is much larger than for the col-
liding particles

• For this reason the luminosity spectrum has to be measured from an-
nihilation data

• Since one is interested in a < 10−4 precision this cannot be done with
calorimeters

•Method of choice: Bhabha acolinearity in the forward region:

– very simple final state

– very high cross section
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The acolinearity method

•Assume only one photon is radiated
ß
√
s′ can be calculated from fermion angles

only
√
s′√
s

=

√
sin θ1 + sin θ2 + sin(θ1 + θ2)

sin θ1 + sin θ2 − sin(θ1 + θ2)

• The radiation in both directions can be un-
folded in the fit

• This requires the knowledge of correlations

• ISR/FSR has to be known from theory
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Requirements from theory

• Experimental θ resolution: δθ = 2 · 10−5

resulting in an
√
s′ resolution of about

10−4

•A possible photon energy cutoff in the
generator therefore has be be blow
k/Eb = 10−4

• This resolution is needed to disentangle
beamstrahlung and beam energy spread

• Statistical error is ∆(
√
s′/
√
s) = 10−5 for

100 fb−1

Reconstructed
√
s′/
√
s

spectra
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• The radiation has to be precise on this level

• The acolinearity method uses the charged tracks only
ß need to have an exact description of FSR and ISR/FSR interference

Karlsruhe, April 2005 17 Klaus Mönig



Physics with large angle Bhabhas at the ILC

• Large angle Bhabha scattering can be used as a general probe for new
physics

• The most general description of this are contact interactions

• O(105) events per year are expected requiring the corresponding theo-
retical uncertainty

• Polarisation is very important to distinguish between the different
helicity structures

•As a unique feature of Bhabha scattering the J=0 state can isolate the
t-channel for vector currents and scalar s-channel exchange
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Results

• Contact interaction limits of
Λ > 60 − 80 TeV can be
reached, depending on the he-
licity structure
(
√
s = 500 GeV, L =

500 fb−1)

• These limits are better than
and complementary to muons

• In principle similar limits can
be reached for e−e−, do we
have Moller scattering under
control theoretically?

Contact interaction limits from
Bhabha scattering
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Conclusions

• Bhabha scattering is needed at the ILC for technical measurements
(luminosity, luminosity spectrum) and for physics

• The required precision is up to 10−4

•A few new technical requirements are needed to use the theory predic-
tions at the ILC:

– beamstrahlung

– polarisation of both beams

– non calorimetric measurements

• The 2-loop calculations are definitely a huge step towards these goals
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