q2e, exp and more

Matthias Steinhauser (University of Hamburg)

CAMW, Karlsruhe, May 2004

Important features

- Automatic generation of diagrams
- Automatic computation
- Automated asymptotic expansion
- Automated interface between the individual parts
- Job control
- Speed

M. Steinhauser, University of Hamburg

Realization

- GEFICOM [Chetyrkin,MS'96-'02]
- AWK, PERL, Mathematica, ...

Realization

Realization

Generation of diagrams

- + fast, flexible
- no pictures, "nothing pre-prepared"
- f77, "black box"

Input: qgraf.dat

Generation of diagrams (2)

` Input: <prb>.lag</prb>	Output: qlist.	
[fcq,fCq,-] [ftq,fTq,-] [fsq,fSq,-] [fbq,fBq,-]	{ diagram pre_factor	593 (+1)*1
[Wm,Wp,+] [pm,pp,+] [a,a,+t] [ø.g.+t]	<pre>number_propagators number_loops number_legs_in number_legs_out</pre>	9 3 2 1
[c,C,-] [fCq,fbq,Wp] [fTq,fbq,Wp] [fSq,fcq,Wm] [fSq,fcq,Wm]	external_leg	q1 1 fbq q2 2 a a2 2 f5a
[fCq,fbq,pp] [fTq,fbq,pp] [fSq,fcq,pm] [fSq,ftq,pm] [Wp,Wm,a] [pp.pm.a]	momentum momentum momentum momentum	p1 1,2 fBq,fbq p2 3,1 g,g p3 2,4 fBq,fbq p4 5,3 fSq,fsq
[fTq,ftq,a] [fCq,fcq,a] [fSq,fsq,a] [fBq,fbq,a] [C,c,g] [g g g]	momentum momentum momentum momentum }	p5 4,6 fTq,ftq p6 4,6 Wp,Wm p7 7,5 fSq,fsq p8 7,5 g,g p9 6,7 fSq,fsq
[fTq,ftq,g] [fCq,fcq,g] [fSq,fsq,g] [fBq,fbq,g]		

Scales, Feynman rules, ...

) (++

Input: <prb>.conf

- * q2e.propagator_file bsg.prop
- * q2e.vertex_file bsg.vrtx
- * q2e.scales M1,M2
- * q2e.mass Wp:M2
- * q2e.mass pp:M2
- * q2e.mass ftq:M1
- * q2e.mass fbq:M3
- * q2e.expand_naive q1,q2,M3
- * q2e.closed_fermion_loop fsq:nls
- * q2e.closed_fermion_loop fcq:nlc
- * q2e.closed_fermion_loop fbq:nlb
- * q2e.closed_fermion_loop ftq:nht

q2e

q2e (2)

Input: <bsg>.vrtx

q2e (3)

Asymptotic expansion

exp (2)

Computation

- FORM [Vermaseren]
- Interpretation of <prb>.<#>.src files: explicit expressions for vertices, propagators, traces, expansions, ...
- "Real integration":

MATAD: vacuum ints. with 1 mass scale up to 3 loops MINCER: massless 2-point functions up to 3 loops, ON-SHELL2 [Kalmykov'99]: on-shell ints. up to 2 loops,

- .. [whatever you can compute]
- Laporta, ...
- Interface to Mathematica

M. Steinhauser, University of Hamburg

Typical runtime

Input/output

Successful applications

- $H \rightarrow gg$, 3 loops, QCD, [Chetyrkin, Kniehl, MS'97]
- $e^+e^-
 ightarrow$ hadrons, $\mathcal{O}(lpha_s^2)$, $\sqrt{s} \gg m_q$, [Chetyrkin,Harlander,Kühn,MS,97]
- $Z
 ightarrow b \overline{b}$, $\mathcal{O}(lpha lpha_s)$, [Harlander,Seidensticker,MS,98]
- MS-on-shell relation, 3 loops, QCD, [Chetyrkin, MS, 99]
- 2-loop static potential, [Kniehl, Penin, Smirnov, MS'02]
- ho parameter, 3 loops, $\mathcal{O}((G_F m_t^2)^3)$ [Faisst,Kühn,Seidensticker,Veretin'03]
- $b \rightarrow s \gamma$, 3 loop matching, [Misiak,MS'04]

M. Steinhauser, University of Hamburg

. . .