Symbolic calculations with FORM
 - A practitioner's point of view -

Sven-Olaf Moch

DESY Zeuthen

1. What is FORM ?
2. What is FORM doing?
3. What is FORM missing?
4. What is the future of FORM ?

What is FORM ?

- The Free On-line Dictionary of Computing
http ://computing-dictionary.thefreedictionary.com/FORM

```
form :
A system written by Jos Vermaseren in 1989 for fast handling of very
large-scale symbolic mathematics problems. FORM is a descendant of
Schoonschip and is available for many personal computers and
workstations.
```


Literature on Form

- Standard reference for scientific community
- New features of FORM J.A.M. Vermaseren math-ph/0010025
- Manual \& Tutorial available from www.nikhef.nl/ form
- FORM manual J.A.M. Vermaseren

Form for Pedestrians A. Heck

- Special features
- Parallel Form
D. Fliegner, A. Retey, J.A.M. Vermaseren hep-ph/0007221
- Table bases
J.A.M. Vermaseren hep-ph/0211297

What is FORM doing?

The structure of FORM

- FORM is type oriented \longrightarrow declarations required (symbols, functions, ...)
- FORM is term oriented \longrightarrow local operations on expressions
- FORM works on partions \longrightarrow modules terminated with . sort and .end
.sort
if(count (b, 1) ==1); multiply 4*a/b; endif;

```
print;
```

.end
local expression $=$
$i d x=a+b ;$
.

1. preprocessor \longrightarrow preparation and filter of input
2. compiler \longrightarrow expressions, set of instructions in internal representation (flat data structure)
3. processor \longrightarrow generation of terms, execution of instructions, sorting

Generating terms

- Local recursive operation on individual term

1. check term for subterms to be inserted
2. put term in normal form by ordering subterms
3. apply set of instructions for given recursion depth
4. put term in normal form by expanding subterms

- FORM process of generation is term oriented (MAPLE or Mathematica work line-oriented)
\longrightarrow tree structure for generation of terms

Sorting terms

- Output stream from generation in unsorted and redundant form
- Result in standard form (summation of equivalent terms)
- Mergesort on patches in small buffer
\longrightarrow presorted patches
\longrightarrow computational cost $n \log n$ for n terms
- File-to-file sort \longrightarrow tree of losers
- Example: merging of presorted integer stream with smallest element surviving at root

Internal data structure

- Representation of subterm $-\frac{2}{5} a^{5}$ as series of short words (integer numbers)
$-8 \longrightarrow$ total length
expression

prototype	term	term	term	NULL

$-1 \longrightarrow$ type symbol
$-4 \longrightarrow$ total length of symbol
term

length	subterm	subterm	\ldots	coeff.

$-3 \longrightarrow$ \# of a in table of symbols
$-5 \longrightarrow$ exponent of a

- $2 \longrightarrow$ numerator of coeff.
- $5 \longrightarrow$ denominator of coeff.
$--3 \longrightarrow$ total length of coeff.
(with negative sign)
coefficient

numerat.	denom.	length

$$
-2 / 5 * a^{\wedge} 5=8143525-3
$$

- Maximum size of terms limited by maximum number of words (maximum size for integers) on given architecture, e.g 32568 on 32 bit system
\longrightarrow big gain from 64 bit architecture

An application (calculation of radiative corrections) S.M., P. Uwer, S. Weinzierl '02

- Two-loop corrections to amplitude for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 3$ jets (n_{f}-terms)
S.M., P. Uwer, S. Weinzierl '02

- Identification of scalar integrals : penta-box \longrightarrow C-topology

- Result for two-loop C-topology as two-fold nested sum S.M., Uwer, Weinzierl '01
- in $D=2 m-2 \varepsilon$ dimensions and with arbitrary powers of the propagators
- with scales $x_{1}=\left(-s_{12}\right) /\left(-s_{123}\right)$ and $x_{2}=\left(-s_{23}\right) /\left(-s_{123}\right)$
- Analytical expression as two-fold nested sum

Ctopo $=$

$$
\left.\begin{array}{l}
\frac{\Gamma\left(2 m-2 \varepsilon-v_{1235}\right) \Gamma\left(1+v_{1235}-2 m+2 \varepsilon\right) \Gamma\left(2 m-2 \varepsilon-v_{2345}\right) \Gamma\left(1+v_{2345}-2 m+2 \varepsilon\right)}{\Gamma\left(v_{1}\right) \Gamma\left(v_{2}\right) \Gamma\left(v_{3}\right) \Gamma\left(v_{4}\right) \Gamma\left(v_{5}\right) \Gamma\left(3 m-3 \varepsilon-v_{12345}\right)} \\
\cdot \frac{\Gamma\left(m-\varepsilon-v_{5}\right) \Gamma\left(m-\varepsilon-v_{23}\right)}{\Gamma\left(2 m-2 \varepsilon-v_{235}\right)}\left(-s_{123}\right)^{2 m-2 \varepsilon-v_{12345}} \sum_{i_{1}=0}^{\infty} \sum_{i_{2}=0}^{\infty} \frac{x_{1}^{i_{1}} \frac{x_{1} i_{2}}{i_{1}} \frac{x_{2}}{i_{2}!}}{\left[\frac{\Gamma\left(i_{1}+v_{3}\right) \Gamma\left(i_{2}+v_{2}\right) \Gamma\left(i_{1}+i_{2}-2 m+2 \varepsilon+v_{12345}\right) \Gamma\left(i_{1}+i_{2}-m+\varepsilon+v_{235}\right)}{\Gamma\left(i_{1}+1-2 m+2 \varepsilon+v_{1235}\right) \Gamma\left(i_{2}+1-2 m+2 \varepsilon+v_{2345}\right) \Gamma\left(i_{1}+i_{2}+v_{23}\right)}\right.} \\
-x_{1}^{2 m-2 \varepsilon-v_{1235} \frac{\Gamma\left(i_{1}+2 m-2 \varepsilon-v_{125}\right) \Gamma\left(i_{2}+v_{2}\right) \Gamma\left(i_{1}+i_{2}+v_{4}\right) \Gamma\left(i_{1}+i_{2}+m-\varepsilon-v_{1}\right)}{\Gamma\left(i_{1}+1+2 m-2 \varepsilon-v_{1235}\right) \Gamma\left(i_{2}+1-2 m+2 \varepsilon+v_{2345}\right) \Gamma\left(i_{1}+i_{2}+2 m-2 \varepsilon-v_{15}\right)}} \\
-x_{2}^{2 m-2 \varepsilon-v_{2345}} \frac{\Gamma\left(i_{1}+v_{3}\right) \Gamma\left(i_{2}+2 m-2 \varepsilon-v_{345}\right) \Gamma\left(i_{1}+i_{2}+v_{1}\right) \Gamma\left(i_{1}+i_{2}+m-\varepsilon-v_{4}\right)}{\Gamma\left(i_{1}+1-2 m+2 \varepsilon+v_{1235}\right) \Gamma\left(i_{2}+1+2 m-2 \varepsilon-v_{2345}\right) \Gamma\left(i_{1}+i_{2}+2 m-2 \varepsilon-v_{45}\right)} \\
+x_{1}^{2 m-2 \varepsilon-v_{1235}} x_{2}^{2 m-2 \varepsilon-v_{2345}} \frac{\Gamma\left(i_{1}+2 m-2 \varepsilon-v_{125}\right) \Gamma\left(i_{2}+2 m-2 \varepsilon-v_{345}\right)}{\Gamma\left(i_{1}+1+2 m-2 \varepsilon-v_{1235}\right) \Gamma\left(i_{2}+1+2 m-2 \varepsilon-v_{2345}\right)} \\
\Gamma\left(i_{1}+i_{2}+4 m-4 \varepsilon-v_{12345}-v_{5}\right)
\end{array}\right]
$$

- systematic expansion of sum in ε possible

How to do the nested sums?

- Hard task in general
\longrightarrow for single-parameter nested sums closed analytical solutions possible
- Example

$$
\begin{aligned}
\sum_{j=1}^{\infty} \frac{x^{j}}{j!} \Gamma(j-\varepsilon) & =\sum_{j=1}^{\infty} \frac{x^{j}}{j}-\varepsilon \sum_{j=1}^{\infty} \frac{x^{j}}{j} S_{1}(j-1)+\varepsilon^{2} \ldots \\
& =-\ln (1-x)-\varepsilon \frac{1}{2} \ln (1-x)^{2}+\varepsilon^{2} \ldots
\end{aligned}
$$

- Expansion of Γ-functions in powers of ε
\longrightarrow harmonic sums Gonzalez-Arroyo, Lopez, Ynduráin ‘ 79 ; Vermaseren ' 98 ; Blümlein, Kurth ‘98

$$
S_{ \pm m_{1}, m_{2}, \ldots, m_{k}}(M)=\sum_{i=1}^{M} \frac{(\pm 1)^{i}}{i^{m_{1}}} S_{m_{2}, \ldots, m_{k}}(i) .
$$

Multi-scale nested sums

- Definition of nested S-sums S.M., Uwer, Weinzierl '01

$$
\begin{aligned}
& S\left(n ; m_{1}, \ldots, m_{k} ; x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{n} \frac{x_{1}^{i}}{i^{m_{1}}} S\left(i ; m_{2}, \ldots, m_{k} ; x_{2}, \ldots, x_{k}\right) \\
& \text { les } x_{1}, \ldots, x_{k}
\end{aligned}
$$

- multiple scales x_{1}, \ldots, x_{k}
- depth k, weight $w=m_{1}+\ldots+m_{k}$

Algorithms

\longrightarrow all algorithms implemented in FORM S.M., P. Uwer to be published

- Multiplication

$$
S\left(n ; m_{1}, \ldots ; x_{1}, \ldots\right) \cdot S\left(n ; m_{1}^{\prime}, \ldots ; x_{1}^{\prime}, \ldots\right)
$$

- Sums involving i and $n-i$

$$
\sum_{i=1}^{n-1} \frac{x_{1}^{i}}{i^{m_{1}}} S\left(i ; m_{2} \ldots ; x_{2}, \ldots\right) \frac{x_{1}^{\prime n-i}}{(n-i)^{m_{1}^{\prime}}} S\left(n-i ; m_{2}^{\prime}, \ldots ; x_{2}^{\prime}, \ldots\right)
$$

- Conjugations

$$
-\sum_{i=1}^{n}\binom{n}{i}(-1)^{i} \frac{x_{0}^{i}}{i^{m_{0}}} S\left(i ; m_{1}, \ldots, m_{k} ; x_{1}, \ldots, x_{k}\right)
$$

- Sums involving binomials, i and $n-i$

$$
-\sum_{i=1}^{n-1}\binom{n}{i}(-1)^{i} \frac{x_{1}^{i}}{i^{m_{1}}} S\left(i ; m_{2} \ldots ; x_{2}, \ldots\right) \frac{x_{1}^{\prime n-i}}{(n-i)^{m_{1}^{\prime}}} S\left(n-i ; m_{2}^{\prime}, \ldots ; x_{2}^{\prime}, \ldots\right)
$$

Higher transcendental functions

- Expansion of higher transcendental functions
- expansion parameter ε occurs in the Pochhammer symbols $(a)_{n}=\Gamma(a+n) / \Gamma(a)$
- Hypergeometric function

$$
{ }_{2} F_{1}\left(a, b ; c, x_{0}\right)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n} x_{0}^{n}}{(c)_{n}} \frac{x_{n}}{n!}
$$

- First Appell function

$$
\begin{aligned}
& \text { function } \\
& F_{1}\left(a, b_{1}, b_{2} ; c ; x_{1}, x_{2}\right)=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} \frac{(a)_{m_{1}+m_{2}}\left(b_{1}\right)_{m_{1}}\left(b_{2}\right)_{m_{2}}}{(c)_{m_{1}+m_{2}}} \frac{x_{1}^{m_{1}}}{m_{1}!} \frac{x_{2}^{m_{2}}}{m_{2}!}
\end{aligned}
$$

- Second Appell function

$$
F_{2}\left(a, b_{1}, b_{2} ; c_{1}, c_{2} ; x_{1}, x_{2}\right)=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} \frac{(a)_{m_{1}+m_{2}}\left(b_{1}\right)_{m_{1}}\left(b_{2}\right)_{m_{2}}}{\left(c_{1}\right)_{m_{1}}\left(c_{2}\right)_{m_{2}}} \frac{x_{1}^{m_{1}}}{m_{1}!} \frac{x_{2}^{m_{2}}}{m_{2}!}
$$

Packages for Form

All packages are available from www.nikhef.nl/ form.

- color.h
library for evaluating group invariants
T. van Ritbergen, A.N. Schellekens, J.A.M. Vermaseren hep-ph/9802376
- harmpol.h
library for the manipulation of harmonic polylogarithms
E. Remiddi, J.A.M. Vermaseren hep-ph/9905237
- mincer.h
library for the calculation of three loop massless propagator graphs
S.A. Larin, F.V. Tkachov and J.A.M. Vermaseren preprint NIKHEF-H/91-18
- summer6.h
library for the manipulation of harmonic sums
J.A.M. Vermaseren hep-ph/9806280

What is FORM missing?

Factorization

- Good factorization offers an enourmous potential for improving algorithms
- However, it is a non-local operation

Gröbner bases

- Solving systems of nonlinear and/or differential equations
- Constructive solution of system of equations
- example for nonlinear equations

$$
\begin{aligned}
& 0=x^{2}+x y+y^{2}-4 \\
& 0=5 x^{2}+2 x y+y^{2}-14
\end{aligned}
$$

- corresponding Gröbner basis
$0=4 x^{2}+x y-10$
$0=13 x^{4}-74 x^{2}+100$

Improved parallelization

- Better parallelization for most popular architectures
\longrightarrow computers with two processors
\longrightarrow computers with >100 processors
- Major achievements for multi-processor SMP architectures

TTP, Karlsruhe University

Miscellaneous

- Local variables
\longrightarrow precompiled subroutines or namespace protection
- System call
\longrightarrow interface e.g. with MAPLE or Mathematica
- Better documentation
- Useful standard libraries

What is the future of FORM ?

Eventually I will retire and not do any research any longer.

OpenForm

- Make Form an open source program
- Good programmers can make improvements

Prerequistites

- Several improvements needed for OpenForm
- Improved internal documentation
- Internal coherency
- Update to current programming practises
- Definition of set of rules for additions and extensions

Strategy

- Make Form useful for a large enough community in science
- Rewrite Form in C++
\longrightarrow layout of objects and structure like C++ from outside
\longrightarrow keep flat (and fast) data structure internally
- Implement wish-list of additions and new features

Epilogue

Form is very versatile and powerful and you have to make everything yourself.

